PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Matematická analýza I - NMUM101
Anglický název: Mathematical analysis I
Zajišťuje: Katedra didaktiky matematiky (32-KDM)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2023
Semestr: zimní
E-Kredity: 5
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Garant: RNDr. Jakub Staněk, Ph.D.
Mgr. Zdeněk Halas, DiS., Ph.D.
Třída: M Bc. MZV
M Bc. MZV > Povinné
M Bc. MZV > 1. ročník
Kategorizace předmětu: Matematika > Matematika, Algebra, Diferenciální rovnice, teorie potenciálu, Didaktika matematiky, Diskrétní matematika, Matematická ekonomie a ekonometrie, Předměty širšího základu, Finanční a pojistná matematika, Funkční analýza, Geometrie, Předměty obecného základu, , Reálná a komplexní analýza, Matematika, Matematické modelování ve fyzice, Numerická analýza, Optimalizace, Pravděpodobnost a statistika, Topologie a kategorie
Neslučitelnost : NMTM101, NUMP001
Záměnnost : NMTM101, NUMP001
Je neslučitelnost pro: MS710P52, NMTM101, MS710P56, MS710P55, MS710P54, NMUM801, MS710P53
Je záměnnost pro: MS710P03A, NMUM801, NMTM101, NMUE002, NUMP001
Ve slož. prerekvizitě: MC260P01C, MC260P01M, MC260P02C
Ve slož. korekvizitě pro: MC260P112, MC260P28
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základní přednáška z matematické analýzy pro první ročník učitelského studia (posloupnosti a jejich limity, funkce, spojitost, derivace, věty o střední hodnotě).
Poslední úprava: T_KDM (11.05.2015)
Podmínky zakončení předmětu

K získání započtu je třeba úspešně napsat dvě písemné práce. První bude v polovině semestru a druhá na jeho konci.

Každá písemná práce bude obsahovat tři úlohy. K jejímu úspešnému napsání je třeba vyřešil správně alespoň dvě z těchto úloh.

Pokud bude student neúspěšný při prvním pokusu, má nárok na dva náhradní termíny.

Zápočet je nutnou podmínkou k účasti na zkošce.

Poslední úprava: Staněk Jakub, RNDr., Ph.D. (08.10.2018)
Literatura -
  • Veselý, J. Základy matematické analýzy I. Matfyzpress, Praha, 2004.
  • Veselý, J. Základy matematické analýzy II. Matfyzpress, Praha, 2009.
  • Kopáček, J. Matematická analýza nejen pro fyziky I. Matfyzpress, Praha, 2005.
  • Kopáček, J. Příklady z matematiky nejen pro fyziky I. Matfyzpress, Praha, 2004.
  • Černý, I. Úvod do inteligentního kalkulu. Academia, Praha, 2002.
  • Brabec, J. a kol. Matematická analýza I. SNTL/Alfa, Praha, 1985.
  • Jarník, V. Diferenciální počet I. Academia, Praha, 1974.
  • Trench, W. F. Introduction to Real Analysis. Dostupné z http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
  • Hairer, E., Wanner, G. Analysis by its History. Springer, 2008.

Poslední úprava: T_KDM (23.04.2012)
Požadavky ke zkoušce

Zkouška má písemnou a ústní část. Písemná část předchází ústní části, její nesplnění znamená, že celá zkouška je hodnocena známkou nevyhověl(a). Při nesložení ústní části je při přístím termínu nutno opakovat obě části zkoušky.

Písemná část bude obsahovat tři úlohy, které korespondují se sylabem přednášky a současně odpovídají tomu, co bylo procvičováno na cvičení.

K úspešnému složení písemné části je nutné vyřešit správně alespoň dvě úlohy. Má-li student pouze dvě úlohy správně, nemůže již být hodnocen známkou výborně.

Požadavky u ústní části odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Poslední úprava: Staněk Jakub, RNDr., Ph.D. (08.10.2018)
Sylabus -

Reálná čísla, supremum. Posloupnosti a jejich limity. Funkce, elementární funkce. Spojitost, vlastnosti spojitých funkcí. Derivace, věta o střední hodnotě a její důsledky, l’Hospitalovo pravidlo, Taylorova věta. Průběh funkce.

Poslední úprava: T_KDM (23.04.2012)
 
Univerzita Karlova | Informační systém UK