|
|
|
||
|
The course intends to introduce the students to the discipline of Discrete and Computational Geometry. The main
goal of the course is to get familiar with the most fundamental notions of this discipline, and to be able to solve
simple algorithmic problems with a geometric component.
Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (21.05.2025)
|
|
||
|
Franco P. Preparata, Michael Ian Shamos. Computational Geometry: An Introduction. Springer, 1985.
Mark Berg, Marc Kreveld, Mark Overmars, Otfried Cheong Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer, 2000.
Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth (ed.). Handbook of Discrete and Computational Geometry (third edition). CRC Press, 2017. Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (21.05.2025)
|
|
||
|
Osnova přednášek: 1. Introduction to Discrete and Computational Geometry 2. Convexity 3. Convex hull in two dimensions 4. Intersection of polygons 5. Triangulations of polygons and point sets 6. Voronoi diagram and Delaunay triangulation 7. Arrangements of lines 8. Duality transforms 9. Linear programming in two dimensions 10. Point location 11. Introduction to polytopes
Osnova cvičení: Discrete and Computational Geometry. Tutorial 3: Convexity. Tutorial 4: Convex hull in two dimensions. Tutorial 5: Intersection of polygons. Tutorial 6: Triangulations of polygons and point sets. Tutorial 7: Voronoi diagram and Delaunay triangulation. Tutorial 8: Semestral test. Tutorial 9: Arrangements of lines. Tutorial 10: Duality transforms. Tutorial 11: Linear programming in two dimensions. Tutorial 12: Point location. Tutorial 13: Polytopes. Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (21.05.2025)
|
|
||
|
The students are expected to be familiar with the basic notions of combinatorics, graph theory and analysis of algorithms. Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (21.05.2025)
|