PředmětyPředměty(verze: 978)
Předmět, akademický rok 2025/2026
   Přihlásit přes CAS
Physical Principles of Dosage Forms - GAF308
Anglický název: Physical Principles of Dosage Forms
Zajišťuje: Katedra farmaceutické technologie (16-16210)
Fakulta: Farmaceutická fakulta v Hradci Králové
Platnost: od 2024
Semestr: zimní
Body: 0
E-Kredity: 2
Způsob provedení zkoušky: zimní s.:písemná
Rozsah, examinace: zimní s.:28/0, Zk [HS]
Počet míst: neomezen / neurčen (neurčen)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Kompetence:  
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Úroveň:  
Poznámka: odhlásit z termínu zkoušky při nesplněné rekvizitě
předmět je možno zapsat mimo plán
povolen pro zápis po webu
Garant: doc. Dr. Georgios Paraskevopoulos, Ph.D.
Patří mezi: 3.ročník 2025/26 Pharmacy (EN19)
Korekvizity : GAF344
Je korekvizitou pro: GAF344
Anotace -
Předmět Fyzikální základy lékových forem je vyučován ve třetím úseku studia a volně navazuje na biofyziku a fyzikální chemii. Předmět si klade za úkol poskytnout ucelené informace o základních fyzikálních principech uplatňovaných při formulaci a stabilizaci lékových forem. Jedná se především o popis vlastností tuhé fáze (léčivé a pomocné látky), kapalné fáze a disperzí (molekulárních, koloidních a makrodisperzí) a dějů na mezifázovém rozhraní, které souvisejí s fyzikální i chemickou stabilitou farmaceutických přípravků. V rámci předmětu fyzikální základy lékových forem budou studenti seznámeni také se základy polymerní chemie nezbytnými pro pochopení struktury, vlastností a funkce těchto látek ve farmaceutických formulacích a moderních lékových systémech. Budou objasněny také základní principy farmaceutických nanotechnologií. S ohledem na to, že fyzikální vlastnosti vstupních surovin a fyzikální děje na mezifázovém rozhraní významně ovlivňují výslednou kvalitu farmaceutických formulací, je porozumění těmto principům nezbytné pro další studium farmaceutické technologie a lékových forem. Z tohoto pohledu lze fyzikální základy lékových forem chápat jako interdisciplinární předmět se spojovací funkcí mezi fundamentálními předměty vyučovanými v prvním úseku studia a vysoce specializovanou farmaceutickou technologii. Témata: Vlastnosti roztoků, Pevná fáze, Povrchové vlastnosti pevné fáze, Rozpustnost a rozpouštění, Difuze, Jevy na rozhraní fází ve farmaceutických soustavách, Farmaceutické tenzidy, Farmaceutické polymery, Polymerní soustavy, Reologie, Disperzní soustavy a jejich stabilita, Základy farmaceutické nanotechnologie
Poslední úprava: Paraskevopoulos Georgios, doc. Dr., Ph.D. (26.09.2025)
Podmínky zakončení předmětu -

Písemný test

Poslední úprava: Paraskevopoulos Georgios, doc. Dr., Ph.D. (26.09.2025)
Literatura -

Povinná:

  • Sinko, Patrick J. (ed.). Martin's physical pharmacy and pharmaceutical sciences : physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelphia: Lippicott Williams & Wilkins, 2011, 659 s. ISBN 978-1-60913-402-0.
  • Attwood, David Florence, Alexander T.. Physical pharmacy. London: Pharmaceutical Press, 2008, 182 s. ISBN 978-0-85369-725-1.

Poslední úprava: Paraskevopoulos Georgios, doc. Dr., Ph.D. (26.09.2025)
Sylabus -

Difúze

Fickovy zákony,
Permeace hmoty přes polymerní membránu
Difúzní principy v biologických systémech
Rozpustnost plynů, kapalin a pevných látek
Rozpouštění; faktory ovlivňující rychlost rozpouštění
Ionizace léčiv v roztocích
Dilalýza, liberace léčiv
Rozpouštědla pro roztoky a aerosoly
Koligativní vlastnosti roztoků
Vlastnosti pevné fáze

Krystalografie
Polymorfie
Hydráty krystalů
Smáčivost pevných částic
Interakce částic
Vlastnosti povrchů a mezipovrchů,
Rozhraní kapalina/kapalina, mezipovrchové napětí, faktory ovlivňující mezipovrchové napětí
Rozhranní kapalina/plyn, povrchové napětí, faktory ovlivňující povrchové napětí
Povrchová aktivita látek, surfaktanty
Strukturní typy surfaktantů
Redukce povrchového a mezipovrchového napětí
HLB systém
Nerozpustné monovrstvy
Solubilizace
Formulace micel, typy micel, farmaceutické aplikace micel
Disperzní systémy
Typy koloidních systémů
Stabilita koloidních systémů
Pufrované a isotonické roztoky
Farmaceutické polymery
Polymerní systémy
Struktura, rozpustnost, biodegradabilita polymerů
Polymerní gely
Aplikace polymerů pro lékové formy
Inteligentní/stimuliresponzivní polymery
Nekompatibility farmaceutických přípravků a její příčiny
Základní principy nanotechnologie ve farmacii

Poslední úprava: Paraskevopoulos Georgios, doc. Dr., Ph.D. (26.09.2025)
Výsledky učení - angličtina

   

Learning Outcomes for the subject Physical Principles of Dosage Forms (GAF308)

Solid Phase

Define the term phase and component, explain the difference with examples. Explain the difference between intramolecular and intermolecular interactions and list the representatives of these interactions. Explain the difference between covalent and non-covalent interactions. Describe the nature of each intermolecular interaction. Explain what the Lennard-Jones potentials represent and describe its graphical representation. List the parameters of the L.-J. potential and explain what they mean. Define the term phase transition and make a classification of transitions based on Ehrenfest classification. Give examples of first and second order phase transitions. Explain how the heat supplied to the system affects the temperature change during a first order transition. Describe what is represented by areas, curves, and points in a schematic one-component phase diagram. Apply Gibbs law of phases to calculate the degrees of freedom of an m-component system with n-phases.

Define and correctly use the terms crystal, polymorph, allotrope, cocrystal, solvate, salt, liquid crystal, crystal lattice, unit cell, and isotropy. State the differences between crystalline and amorphous phases in terms of the arrangement of structural particles and physicochemical properties. State the difference between single crystal and polycrystal and true crystal and quasicrystal. Discuss the advantages and disadvantages and reasons for using amorphous or crystalline forms of API in the pharmaceutical industry. Explain the difference between crystal lattice and motif. Describe the difference between a primitive and a centered cell and list the types of centered cells. List 7 crystal systems and give general lattice parameters using one example of a system. Describe the different stages of crystallization. Define the term supersaturation and discuss how supersaturation can be achieved. Provide a reason for the use of controlled crystallisation by inoculation in the pharmaceutical industry. Classify crystals based on the interactions of the particles. Discuss the implications of polymorphism in terms of physicochemical properties and technological processing.

Describe the generation of braking and characteristic X-rays and show schematically the dependence of X-ray intensity on wavelength. Describe the Compton effect, the photoeffect, the formation of Auger electrons, and X-ray diffraction. State the Bragg equation and describe each quantity. Explain the difference between X-ray diffraction of single crystals and X-ray diffraction of powders in terms of the sample material and the information obtained about the sample. Illustrate schematically and describe the function of a powder diffractometer with a Bragg-Brentano arrangement. List the types of X-ray detectors and describe the function of a scintillation detector with a photomultiplier tube. Describe what the intensity, position and profile of the diffraction peaks indicate.

Describe the principles of thermogravimetry and differential scanning calorimetry. Explain the difference between exothermic and endothermic phenomena, give examples and schematically illustrate a DSC recording of the heating of an amorphous substance. Summarize the purposes for which thermal analysis can be used in pharmacy.

 

Surface Properties of the Solid Phase

Define and correctly use the terms interface, surface, surface energy, surface tension, porosity, adsorption, adsorbate, adsorbent, desorption, sorption, surface coverage, adsorption isotherm, and water activity. Give a reason for the existence of surface energy. State the equations and units for surface energy and tension and describe each quantity. Describe capillary phenomena and explain the reasons for their occurrence. State the Young-Laplace equation and describe each quantity. State what the Kelvin, Gibbs-Freundlich-Ostwald, Young, and Washburn equations and the Curie-Wulff theorem express. Define for what contact angles a surface is wetted or unwetted by a liquid. List the methods used to characterize the wettability of solid surfaces. Explain the term contact angle hysteresis. Describe the principle of the sessile drop method, Washburn method, Wilhelmy method, mercury porosimetry, gas pycnometry, determination of sorption-desorption isotherm, determination of water activity, and determination of specific surface area by air permeation. Explain the difference between true density, particle density, and bulk density. Explain the reason for the existence of adsorption. State the difference between physical and chemical adsorption. State what isotherms can be used to describe single-layer and multilayer adsorption. Describe what information can be obtained by measuring the BET isotherm.

 

 

 

Dissolution and Solubilization

Define and correctly use the terms solution, solvation, solubility, hydrophilic-lipophilic equilibrium, cosolvent, hydrotrope, minimum hydrotropic concentration, critical micellar concentration, and maximum additive concentration. Classify solutions in terms of state, saturation, and dissociation in solvent. Explain thermal phenomena during dissolution. Describe the classification of drugs on the basis of solubility according to the Czech Pharmacopoeia and the biopharmaceutical classification system and evaluate the advantages and disadvantages. Discuss the factors affecting solubility. State Henry's law and describe the quantities. State the Noyes-Whitney equation, describe the quantities, and discuss how the rate of dissolution can be influenced based on this equation. Discuss the differences between the Hildebrand and Hansen solubility parameters. Describe the determination of true and apparent dissolution. Define the 4 classes of drugs according to the Biopharmaceutical Classification System. State Lipinski's rule of five. Justify the efforts to increase the solubility of poorly soluble drugs. List the methods of increasing solubility by chemical and physical modification of drugs. Describe the principle of increasing solubility by increasing wettability, micellar solubilization, use of cosolvent, hydrotrope, pH modifier, formation of complexes, solid dispersions, microgranules, and lipophilic forms. Give examples of excipients used to increase solubility. Describe the structure of liposomes and micelles and discuss the incorporation of hydrophilic and hydrophobic substances. State the differences between micelle-forming surfactants and hydrotropes.

 

 

 

Solutions

Define and correctly use the terms solvent, solute, true solution, colloidal solution, ideal solution, real solution, additive properties, constitutive properties, colligative properties, molarity, molality, mole fraction, volume percentage, mass percentage, osmotic pressure, oncotic pressure, osmolality, and tonicity.

Classify solutions based on their phase state and particle size and provide relevant examples. Explain the differences between electrolytic and non-electrolytic solutions. Explain various expressions of solution concentration.

Discuss the differences between ideal and real solutions including their behavior as described by Raoult’s and Henry’s laws. Explain the differences between cohesive and adhesive interactions in solutions and discuss their significance in relation to solution ideality. Discuss the positive and negative deviations from Raoult’s law.

Explain the differentiation between additive, constitutive, and colligative properties of solutions. Explain the the differences in colligative properties between solutions and pure solvents.

Explain the osmotic pressure and the phenomenon of osmosis. Define and correctly use the terms osmolarity, osmolality, and tonicity. Comment Van’t Hoff’s correction factor and osmotic coefficient.

 

 

Diffusion

Define and correctly use the terms of diffusion, diffusion coefficient, diffusion gradient, concentration gradient, membrane, diffusion barrier, steady-state diffusion, membrane resistance, membrane permeability, and semipermeable membrane. Explain the differences between diffusion and Brownian motion and describe the thermodynamic basis of diffusion.

Discuss the different diffusion gradients and their pharmaceutical significance. Explain how diffusion differs between different phase states. Describe Fick’s first law and Fick’s second law and discuss their differences.

Explain steady-state diffusion and its significance for predicting drug release behavior. Explain the concept of lag-time. Describe membrane diffusion principles and describe the relationship between membrane permeability and resistance.

Describe different pharmaceutical processes and their relevance with diffusion including drug release from matrix formulations, osmosis, ultrafiltration, dialysis, hemodialysis, lyophilization.

 

 

Rheology

Define and correctly use the terms shear stress, velocity gradient, dynamic viscosity, kinematic viscosity, ideal viscosity, and apparent viscosity.

 and state the units of these quantities.

Indicate the subject of interest in rheology and applications in pharmaceutical technology.

Characterize Newtonian systems, present Newton's model/law, flow and viscosity curves. Characterize non-Newtonian systems and classify them according to the time dependence of viscosity and flow curves. State the power model and the use of its parameters for characterization of pharmaceuticals. Explain the concept of thixotropy, describe the flow and viscosity curves of thixotropic systems. State the advantages of this behavior for pharmaceuticals.

Describe the procedure for measuring viscosity with capillary viscometers. State what the measurement results in and how the kinematic and dynamic viscosity values are obtained.

Explain the difference between a viscometer and a rheometer and between a relative and an absolute viscometer/rheometer. State how a spindle suitable for measuring the viscosity of a given sample is selected. State the types of geometries that are used in absolute rheometer measurements. Compare the advantages and disadvantages of a relative viscometer and an absolute rheometer.

Explain the concept of consistency. Describe the procedure and evaluation of a penetrometry consistency test. Give examples of excipients for which this test is prescribed.

 

 

Interfacial Phenomena

Define and correctly use the terms surface, interface, surface tension, interfacial tension, free surface energy, positive adsorption, negative adsorption.

Describe surface tension, including the role of cohesive interactions at the surface versus the bulk phase. Describe free surface energy, the factors influencing it, and its relationship with surface tension. Discuss the significance of surface tension and free surface energy for the stability of pharmaceutical formulations and discuss factors affecting surface tension.

Discuss the nature of surface tension at liquid surface and distinguish between surface tension and interfacial tension between liquids. Explain values of surface and interfacial tension across various liquids and the underlying reasons for the different values.

Describe the spreading coefficient and the factors on which it depends. Describe and compare the different methods for measuring surface tension such as stalagmometry, capillary methods, and detachment methods.

Discuss the principles of adsorption at phase interfaces and explain the terms positive and negative adsorption and their impact on drug delivery systems.

 

 

Surfactants

Define and correctly use the terms surfactant, amphiphilic compound, solubilizer, emulsifier, detergent, wetting agent, critical micellar concentration (CMC), micelle, hydrophilic-lipophilic balance (HLB), macrogol esters, polysorbates, poloxamers.

Describe the nature of surface-active agents and identify the structural characteristics necessary for surface activity. Discuss the classification of surfactants including differentiations based on the structure of the hydrophilic and lipophilic segments.

Explain the role of surfactants in pharmaceutical applications, including solubilization, emulsification, and wetting. Explain the HLB system for surfactant classification and compare the calculation of HLB values using Griffin’s and Davies’ methods, assessing their applicability to different types of surfactants.

Describe micelles, explain their formation, and evaluate their importance in pharmaceutical formulations. Define the critical micellar concentration (CMC) and describe the physicochemical changes that occur as surfactant concentration increases.

Describe different ionic and nonionic surfactants together with their characteristics and relevant examples with their HLB values.

Discuss the emulsion formulation and the role of HLB values in emulsion type and stability.

Describe surfactant applications in pharmaceutical suspensions and their role in stabilizing dispersed systems. Explain the function of wetting agents and describe their significance in formulation science.

 

 

Polymers 1 and 2

Define and correctly use the terms macromolecule, monomer, oligomer, polymer, linear polymer, branched polymer, homopolymer, heteropolymer, copolymer, block copolymer, grafted copolymer, atactic polymer, isotactic polymer, and symmetric polymer.

Describe the differences between addition and condensation polymerization methods and discuss the conversion degree over the process of the two methods.

Describe the methods for the polymer molecular weight determination, including laser diffraction, viscometry, chemical analysis, gel chromatography, MALDI-TOF, and elemental analysis of copolymers. Discuss the distinction between number-average and weight-average molecular weights. Define polymer polydispersity, discuss its possible values, and explain how it influences polymer properties.

Discuss the concept of polymer crystallinity and explain how it is affecting the polymer properties. Describe the polymer glass transition temperature and analyze the factors influencing it. Discuss how polymer structure impacts glass transition temperature.

Discuss the applications of polymers in pharmaceutical sciences. Describe polymer swelling and dissolution, distinguishing between polymer solutions and gels.

Describe stimuli-responsive polymers and discuss their potential applications in pharmaceutical formulations.

 

 

Dispersed Systems

Define and correctly use the terms dispersed system, continuous phase, dispersed phase, colloidal dispersion, coarse dispersion, lyophilic colloid, lyophobic colloid, association colloid, suspension, emulsion, zeta potential, electrical double layer, Nernst potential, Stern potential, DLVO theory, and controlled flocculation.

Classify dispersed systems based on particle size and describe the key differences between various types. Describe colloidal dispersions and their stability and analyze how electrolytes influence their behavior.

Describe the electrical double layer at phase interfaces and explaining the principles of Nernst potential and zeta potential. Discuss the role of these potentials in the stability of dispersed systems.

Classify the different types of instability in dispersed systems and propose appropriate stabilization strategies. Explain the concept of controlled flocculation, its objectives, and the necessary parameters and excipients required to achieve controlled flocculation. Discuss the advantages of flocculated suspensions and the risks associated with deflocculated suspensions.

 

 

Nanotechnology

Define and correctly use the terms nanomaterial, nanoparticle, and nanopharmaceuticals. Describe the rationale of nanoparticles for drug delivery and distinguish between pharmacokinetics and particokinetics.

Discuss the different parts of nanoparticles and explain the importance of particle size for the properties of nanoparticles.

Discuss the physicochemical characterization of nanoparticles in relation to their use and in relation to preparation and properties.

Describe different methods for the preparation of nanoparticles together with the key steps of each procedure.

Describe the structure of dendrimers and their differences from the classical polymers.

 

Poslední úprava: Paraskevopoulos Georgios, doc. Dr., Ph.D. (26.09.2025)
 
Univerzita Karlova | Informační systém UK