SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Probability and Mathematical Statistics - NSTP022
Title: Pravděpodobnost a matematická statistika
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: summer
E-Credits: 8
Hours per week, examination: summer s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. RNDr. Daniel Hlubinka, Ph.D.
prof. RNDr. Marie Hušková, DrSc.
Classification: Mathematics > Probability and Statistics
Incompatibility : {NUMP013 a NUMP023}, NMAI059, NSTP014, NSTP070, NSTP177
Pre-requisite : {Math. Analysis 1a, 1b}
Co-requisite : NMAA069
Interchangeability : NMSA202
Is incompatible with: NMUE012, NMUE032, NMAI016, NHII031, NSTP070, NSTP017, NSTP177, NSTP129, NSTP014
Is interchangeable with: NSTP129, NMAI016
Annotation -
Foundations of probability theory (axiomatic definition of probability, conditional probability, random vectors and their characteristics, limit theorems). Basic statistical tasks (point and interval estimations, hypothesis testing for simple models).
Last update: G_M (10.10.2001)
Aim of the course -

Foundations of probability theory and mathematical statistics

Last update: T_KPMS (22.05.2008)
Literature - Czech

Dupač V., Hušková, M.: Pravděpodobnost a matematická statistika, Karolinum, 1999, 2001.

Likeš J., Machek J.: Matematická statistika, SNTL, 1983

Anděl J.: Matematická statistika, SNTL, 1978 (některé paragrafy)

Anděl J.: Statistické metody, Matfyzpress, 1993 (některé paragrafy)

Last update: T_KPMS (14.05.2003)
Teaching methods -

Lecture+exercises.

Last update: G_M (27.05.2008)
Syllabus -

Foundations of probability theory (axiomatic definition of probability, conditional probability, random vectors and their characteristics, limit theorems).

Basic statistical tasks (point and interval estimations, hypothesis testing for simple models).

Last update: T_KPMS (14.05.2003)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html