|
|
|
||
Advanced Complex Analysis for bachelor's program in General Mathematics.
Recommended for specializations Mathematical Analysis.
Last update: G_M (16.05.2012)
|
|
||
Advanced topics in complex analysis. Last update: G_M (27.04.2012)
|
|
||
The credit (zápočet) is a necessary condition for coming to examination. Students obtain the credit for giving short lectures on given topics during classes. The character of the credit does not enable its repetition. Last update: Lávička Roman, doc. RNDr., Ph.D. (24.02.2021)
|
|
||
Rudin, W.: Reálná a komplexní analýza, Academia Praha, 1977
Novák, B.: Funkce komplexní proměnné (skripta), SPN Praha, 1980
Luecking, D.H., Rubel, L.A.: Complex Analysis, A Functional Analysis Approach, Springer-Verlag, Universitext, 1984
Veselý, J.: Komplexní analýza, Karolinum Praha, 2000 Last update: G_M (27.04.2012)
|
|
||
Lecture and exercises Last update: G_M (27.04.2012)
|
|
||
Requirements to the exam correspond to the syllabus to the extent to which topics were covered during the course. Last update: Lávička Roman, doc. RNDr., Ph.D. (24.02.2021)
|
|
||
Entire and meromorphic functions (infinite products, the Weierstrass product theorem, the Mittag-Leffler theorem, Cauchy's method)
Properties of the space H(G) of holomorphic functions on an open set G. Characterization of the dual H(G)*, applications of the Hahn-Banach theorem: Runge's theorems.
Conformal mappings (homographic transformations, the Schwarz lemma, Blaschke's factors, the Riemann theorem)
Last update: Kaplický Petr, doc. Mgr., Ph.D. (29.05.2017)
|