SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
Introduction to Complex Analysis - NMMA301
Title: Úvod do komplexní analýzy
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: doc. Mgr. Petr Honzík, Ph.D.
Class: M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. OM
M Bc. OM > Povinné
Classification: Mathematics > Real and Complex Analysis
Pre-requisite : {One 1st year Analysis course}
Incompatibility : NMAA021
Interchangeability : NMAA021
Is co-requisite for: NMMA338
Is incompatible with: NMMA901
Is interchangeable with: NMMA901, NMAA021
Annotation -
An introductory course in complex analysis. Required course for bachelor's programs General Mathematics and Information Security.
Last update: G_M (16.05.2012)
Aim of the course -

Introduction to complex analysis.

Last update: G_M (27.04.2012)
Course completion requirements -

The exam will be written. The student will receive credit for active participation in exercises.

Last update: Lávička Roman, doc. RNDr., Ph.D. (25.09.2022)
Literature - Czech
Základní literatura

Veselý, J.: Komplexní analýza (pro učitele), Karolinum Praha, 2000.

Novák, B.: Analýza v komplexním oboru (skripta), SPN Praha, 1980.

Kopáček, J.: Příklady z matematiky nejen pro fyziky IV, Matfyzpress 2009.

Doplňková literatura.

Rudin, W.: Analýza v reálném a komplexním oboru, Academia Praha, 1977; přepracované vydání 2003

Last update: Kalenda Ondřej, prof. RNDr., Ph.D., DSc. (29.09.2017)
Teaching methods -

Lecture and exercises

Last update: G_M (27.04.2012)
Requirements to the exam -

Requirements to the exam correspond to the syllabus to the extent to which topics were covered during lectures and tutorials.

Last update: Lávička Roman, doc. RNDr., Ph.D. (26.05.2019)
Syllabus -

Holomorphic functions.

Power series and elementary functions.

Path integral.

The local Cauchy theorem and its applications.

Isolated singularities.

The Laurent series, residues.

The global Cauchy theorem and formula

Last update: Kaplický Petr, doc. Mgr., Ph.D. (29.05.2017)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html