SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Functions of several variables - OENMM1703Z
Title: Functions of several variables
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2020
Semester: both
E-Credits: 6
Hours per week, examination: 2/1, C+Ex [HT]
Capacity: winter:unknown / unknown (999)
summer:unknown / unknown (999)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: English
Teaching methods: full-time
Explanation: Rok3Student zapíše jeden z kurzů Funkce více proměnných nebo Metody matematické anal
Old code: FVPR
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
you can enroll for the course in winter and in summer semester
Guarantor: RNDr. František Mošna, Ph.D.
prof. RNDr. Ladislav Kvasz, DSc., Dr.
Class: Předměty v angličtině - mgr.
Classification: Mathematics > Real and Complex Analysis
Annotation -
Vector spaces, neighbourhood of a point, convergence, functions of several variables, limits, continuity, directional derivative, partial derivatives, differential, tangent planes, normals, implicit function, curves, surfaces, transformation of coordinates, multidimensional integral, substitution, Fubini theorem, curvilinear and surface integrals, application.
Last update: Esserová Kateřina, DiS. (24.09.2019)
Aim of the course -

Primary purpose of the course is to make students acquainted with basic ideas, knowledges and connections of infinitesimal calculus of two or more variables functions in relation with similar courses on one variable functions. Secondary aim is to prove, repetite and fix knowledges of previous courses especially from mathematical analysis, but from geometry (curves, surfaces) or algebra (vector space, linear, quadratic forms) as well.

Last update: Esserová Kateřina, DiS. (24.09.2019)
Literature -

- Serge Lang: Calculus of Several Variables, Springer N. York 1987
- Walter Rudin: Principles of Mathematical Analysis,McGraw-Hill 1976

- František Mošna: Inženýrská matematika (ČZU Praha 2011)
- Zuzana Došlá, Ondřej Došlý: Diferenciální počet funkcí více proměnných (MU Brno 1999)
- Bruno Budinský, Jura Charvát: Matematika II. (stavební fakulta ČVUT Praha)
- Jaroslav Tišer, Jan Hamhalter: Diferenciální počet funkcí více proměnných (elektrotechnická fakulta ČVUT Praha)
- Jaroslav Tišer, Jan Hamhalter: Integrální počet funkcí více proměnných (elektrotechnická fakulta ČVUT Praha)
- Eva Dontová: Matematika IV. (fakulta jaderné fyziky a inženýrství ČVUT Praha)
- Štěpán Pelikán, Tomáš Zdráhal: Matematická analýza - funkce více proměnných (Universita J.E.Purkyně, Ústí n. L.)
- Ondřej Zindulka: Vektorové pole (stavební fakulta ČVUT Praha)
- Jiří Brabec: Matematická analýza II. (stavební fakulta ČVUT Praha)- Bruno Budinský, Jura Charvát: Matematika II. (stavební fakulta ČVUT Praha)
- Vítězslav Novák: Diferenciální počet funkcí více proměnných (UJEP Brno 1983)
- Miloš Ráb: Riemannův integrál v En (UJEP Brno 1985)
-

Last update: Esserová Kateřina, DiS. (24.09.2019)
Teaching methods -

Lecture and seminar

Last update: Esserová Kateřina, DiS. (24.09.2019)
Requirements to the exam -

- Credit requirements: active participation at seminars, succesful completion of the control tests (during the exam period there will be stated two terms for possible correction tests)
- Exam requirements: knowledge of given definitions, understanding of definitions, connections, relations, ability to solve problems

Last update: Esserová Kateřina, DiS. (24.09.2019)
Syllabus -
Introduction
  • repetition - linear vector spaces, scalar, vector and outer product (geometric meaning, determinants), lines - general form, slope-intercept form, parametric form, parametrization corresponding with longitude, planes, functions
  • convergency, neighbourhood, distance of points (metrics, norm - euclid, sum, maximum), points - inner, outer, border, limit, isolated, sets - open, closed, bounded, convex, connex, compact, area.
Differential calculus
  • real functions of several variables (R2->R), domain, level sets, cross-sections, limit (over a set, over domain), continuity
  • derivative in direction(Gâteaux differential and derivative), partial derivative, total differential (Frechet derivative), interrelations, theorems on derivatives and differential (counterexamples), gradient (V) - geometric meaning
  • higher order derivatives (exchange of mixed second derivatives), second differential, Taylor theorem
  • extremes local, absolut, constraint extremes (substitut method and Lagrange multipliers)
  • Banach fixed point theorem, implicit function theorem, calculating of derivatives, differentials, tangents, tangent planes
transformation of coordinates (R2->R2, R3->R3) - polar, (cylindric), spheric

Integral calculus

  • multiple (double, triple) integral, calculating of an area (disc), volume (ball, cone), centre of gravity (triangle, tetrahedron), moments, Fubini theorem, substitute theorem - connection of determinants with volume and area
  • curves in R2 (explicit, implicit, parametric form), tangent, normal, longitude of a curve (circle), divergence, (3. coordinate of curl), curve integral, Green theorem
  • křivky v R3 (vyjádření parametrické), tečna, hlavní normála, binormála
surfaces in R3 (explicit, implicit, parametric form), tangent plane, normal, area (of a sphere, lateral area of a cone), points on surface (eliptic, hyperbolic,..., asymptotic directions), divergence, curl, surface integral, Stokes, Gauss-Ostrogradsky theorem.

Last update: Esserová Kateřina, DiS. (24.09.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html