SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Introduction to Interpolation Theory 2 - NMMA534
Title: Úvod do teorie interpolací 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: RNDr. Lenka Slavíková, Ph.D.
Teacher(s): RNDr. Lenka Slavíková, Ph.D.
Class: M Mgr. MA
M Mgr. MA > Povinně volitelné
Classification: Mathematics > Functional Analysis, Real and Complex Analysis
Incompatibility : NRFA076
Interchangeability : NRFA076
Is interchangeable with: NRFA076
Annotation -
Advanced topics from the interpolation theory. Recommended for master students of mathematical analysis.
Last update: T_KMA (02.05.2013)
Course completion requirements -

Oral exam on a-priori known parts of the course.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (22.07.2018)
Literature -

R.A. Adams, Sobolev Spaces,Academic Press, New York, 1975.

C. Bennett, R. Sharpley: Interpolation of Operators, Academic Press, Princeton, 1988.

J. Bergh, J. Löfström: Interpolation Spaces, Springer, Berlin, 1976.

L. Pick, A. Kufner, O. John and S. Fučík: Function Spaces I, De Gruyter, Berlin, 2012.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (22.07.2018)
Syllabus -
1. Introduction to the interpolation principle

Young functions, Orlicz spaces, Lebesgue spaces, embedding theorems, Minkowski inequality, Hölder inequality, interpolation inequalities in Sobolev embeddings

2. Classical interpolation theorems: Riesz-Thorin convexity theorem

Riesz-Thorin convexity theorem, operator pf strong type, Riesz convexity theorem for positive operators, Hadamard three lines theorem, Riesz-Thorin theorem, Hausdorff-Young inequaity, boundedness of convolution operators on Lebesgue spaces, Hardy inequality, interpolation square

3. Classical interpolation theorems: Yano extrapolation theorem

Integral mean operator, Yano theorem

4. Classical interpolation theorems: Marcinkiewicz theorem

Nonincreasing rearrangement, Lorentz spaces, embeddings, Hölder inequality, Hardy-Littlewood--Pólya principle, operator of weak type, Marcinkiewicz theorem, Hardy-Littlewood maximal operator, Riesz potential, Hilbertov transform, singular integral operators

5. Joint-typeoperators

Calderón operator, Herz inequality, O´Neil inequality, Calderón operator, operator of joint weak type, interpolation of such operators, Lorentz-Zygmund spaces

6. Abstract interpolation theory

Categories and functors, compatible couple, sum and intersection, interpolation space, Aronszajn-Gagliardo theorem

7. Real method of interpolation

Peetre K-functional, Gagliardo completion, Holmstedt formulae, reiteration theorem, J-functional, examples of K-functionals for certain pairs of spaces

8. Interpolation of compact operators

Compact operators on Lebesgue spaces, Cwikel theorem

9. Optimal Sobolev embeddings

Rerrangement-invariant space, Pólya-Szegö inequality, Sobolev space, Sobolev embedding, optimal range construction.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (22.07.2018)
Entry requirements -

Basic knowledge in measure theory.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (22.07.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html