SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Introduction to Interpolation Theory 1 - NMMA533
Title: Úvod do teorie interpolací 1
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 4
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: prof. RNDr. Luboš Pick, CSc., DSc.
Teacher(s): prof. RNDr. Luboš Pick, CSc., DSc.
Class: M Mgr. MA
M Mgr. MA > Povinně volitelné
Classification: Mathematics > Functional Analysis, Real and Complex Analysis
Incompatibility : NRFA045
Interchangeability : NRFA045
Is interchangeable with: NRFA045
Annotation -
Basic course on interpolation of linear and sublinear operators on function spaces. Recommended for master students of mathematical analysis.
Last update: T_KMA (02.05.2013)
Course completion requirements -

Oral exam on a-priori known parts of the course.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (09.01.2023)
Literature -

C. Bennett, R. Sharpley: Interpolation of Operators, Academic Press, Princeton, 1988.

J. Bergh, J. Löfström: Interpolation Spaces, Springer, Berlin, 1976.

L. Pick, A. Kufner, O. John and S. Fučík: Function Spaces I, De Gruyter, Berlin, 2012.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (22.07.2018)
Syllabus -

1. Introduction

Interpolation of Lebesgue spaces, examples of operators

2. Classical interpolation theorems

Riesz theorem for positive operators, Riesz-Thorin theorem, Hausdorff-Young theorem, convolution, Riesz potential, interpolation of weak estimates, Vitali theorem, weak type (1,1) of the Hardy-Littlewood maximal operator, non-increasing rearrangement, Hardy's lemma, Lorentz spaces, Hardy-Littlewood inequality, Marcinkiewicz theorem, interpolation of compact operators, Yano's extrapolation theorem, exponential-type extrapolation

3. Real interpolation

compatible couples, sums and intersections of spaces, K-functional, interpolation pairs, interpolation spaces, basic theorem of real interpolation, K-funkcionál of (L^1,L^\infty)

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (09.01.2023)
Entry requirements -

Basic knowledge in measure theory.

Last update: Pick Luboš, prof. RNDr., CSc., DSc. (09.01.2023)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html