SubjectsSubjects(version: 962)
Course, academic year 2024/2025
   Login via CAS
On Saturday 19th October 2024 there will be a shutdown of some components of the information system. Especially the work with files in Thesis modules will be particularly unavailable. Please postpone your requests for a later time.
Algebra - NMAG206
Title: Algebra
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 8
Hours per week, examination: summer s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: https://www1.karlin.mff.cuni.cz/~kala/web/teaching/23alg
Guarantor: doc. RNDr. David Stanovský, Ph.D.
Class: M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 2. ročník
M Bc. MMIT
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 2. ročník
Classification: Mathematics > Algebra
Pre-requisite : {One course in Linear Algebra}
Interchangeability : {Algebra 1 and Algebra 2}
Is interchangeable with: NMAG201
Annotation -
Introductory course for the second year students of mathematics. Introduction to the theory of groups and commutative algebra.
Last update: Kaplický Petr, doc. Mgr., Ph.D. (30.05.2019)
Course completion requirements - Czech

Zápočet z předmětu je nutnou podmínkou účasti u zkoušky. Povaha kontroly studia pro získání zápočtu vylučuje možnost opakování této kontroly.

Zápočet se uděluje za získání dostatečného počtu bodů (za pravidelné sady domácích úkolů a dvě písemky). Detaily viz https://www1.karlin.mff.cuni.cz/~kala/web/teaching/23alg

Zkouška je písemná, viz Požadavky ke zkoušce.

Last update: Kala Vítězslav, doc. Mgr., Ph.D. (30.01.2024)
Literature -
Last update: Kala Vítězslav, doc. Mgr., Ph.D. (11.02.2021)
Requirements to the exam - Czech

Zkouška bude téměř výhradně písemná (s výjimkou případné kontroly ústním přezkoušením při zásadních nejasnostech) a bude obsahovat otázky na definice a znění vět, důkazy a řešení typových příkladů.

Přesné požadavky ke zkoušce odpovídají látce probrané na přednášce a cvičeních, viz https://www1.karlin.mff.cuni.cz/~kala/web/teaching/23alg

Last update: Kala Vítězslav, doc. Mgr., Ph.D. (30.01.2024)
Syllabus -

1. Abstract theory of division - number domains, polynomial domains, fundamental theorem of arithmetics for general domains, Euklid's algorithm, principal ideals

2. Algebra of polynomials - finite fields, multivariate polynomials, symmetric polynomials, splitting fields, fundametal theorem of algebra

3. Groups - elementary theory, group action, solvable groups

3. Field extensions - finite extensions, algebraic extensions, degree, constructions with ruler and compass, introduction to Galois theory

Last update: Stanovský David, doc. RNDr., Ph.D. (22.02.2022)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html