Theoretical Basis of Modern Spectroscopic Methods - MC260P31
Title: Teoretické základy moderních spektroskopických metod
Czech title: Teoretické základy moderních spektroskopických metod
Guaranteed by: Department of Physical and Macromolecular Chemistry (31-260)
Faculty: Faculty of Science
Actual: from 2022
Semester: winter
E-Credits: 3
Examination process: winter s.:written
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: 3
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Note: enabled for web enrollment
Guarantor: prof. doc. RNDr. Petr Bouř, CSc.
Teacher(s): prof. doc. RNDr. Petr Bouř, CSc.
Incompatibility : MC260P94
Opinion survey results   Examination dates   WS schedule   
Annotation -
The course offers overview of physical principles of optical and NMR spectroscopies and quantum-chemical spectral simulations. Introduction to the theoretical simulations of spectral parameters and other molecular properties will be presented, i.e., quantum and molecular mechanics. Students will also learn how to use the modern spectroscopic method to determine molecular structure. The theoretical part will be complemented by exercises with computer.
Last update: Bouř Petr, prof. doc. RNDr., CSc. (07.06.2019)
Literature -

 Molecular Vibrational-Rotational Spectra, D. Papousek and M. R. Aliev, Elsevier, Amsterdam, 1982.

 Density-Functional Theory of Atoms and Molecules, R. Parr, W. Yang, OxfordUniversity Press 1989.

 Josef Kvasnica, Teorie elektromagnetického pole, Academia, Praha, 1985.

 Vibrational Optical Activity, L. D. Nafie, Wiley 2011.

 Malcolm H. Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley 2001.

Last update: Bouř Petr, prof. doc. RNDr., CSc. (07.06.2019)
Requirements to the exam -

Written test includes questions from the lecture topics (see the sylabus - basics of quantum mechanics, molecular mechanics, theory of electromagnetic radiation, perturbation calculus, probability of a transition, vibrational, Raman and UV-vis spectroscopies, simulation of the spectra using quantum-chemical programs, theory of nuclear magnetic resonance and computation of NMR spectra).

Last update: Bouř Petr, prof. doc. RNDr., CSc. (07.06.2019)
Syllabus -

1. Structural and computational method in chemistry, molecular dynamics.

2. Introduction to quantum mechanics

3. Quantum chemistry(HF, DFT, LCAO)

4. Density functional theory

5. Perturbational calculus, static, MP2

6. Perturbational calculus, dynamic, transition probability, spectral intensity

7. Theory of electromagnetic radiation, Maxwell equations, interaction of ligth with molecules, polarizability

8. Nuclear magnetic resonance, vector and population model, product operators

9. NMR spectroscopic methods, spectral interpretation

10. Optical methods usech in chemistry and biology (electronic circular dichroism, vivrational absorption and circular dichroism, Raman scattering, Raman optical activity).

11. Simulation of spectral parameters by computer programs

12. Visit of a NMR/spectroscopic laboratory

Last update: Bouř Petr, prof. doc. RNDr., CSc. (07.06.2019)