Logika a teorie množin (CŽV) - NMUM818
Anglický název: Logic and Set Theory (CŽV)
Zajišťuje: Katedra teoretické informatiky a matematické logiky (32-KTIML)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2019
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Je zajišťováno předmětem: NUMP016
Garant: Mgr. Jana Glivická
doc. Mgr. Petr Gregor, Ph.D.
Třída: Učitelství matematiky
Kategorizace předmětu: Informatika > Teoretická informatika
Matematika > Matematika, Algebra, Diferenciální rovnice, teorie potenciálu, Didaktika matematiky, Diskrétní matematika, Matematická ekonomie a ekonometrie, Předměty širšího základu, Finanční a pojistná matematika, Funkční analýza, Geometrie, Předměty obecného základu, , Reálná a komplexní analýza, Matematika, Matematické modelování ve fyzice, Numerická analýza, Optimalizace, Pravděpodobnost a statistika, Topologie a kategorie
Neslučitelnost : NUMP016
Záměnnost : NUMP016
Je neslučitelnost pro: NMUM505
Je záměnnost pro: NMUM505
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základní kurz matematické logiky a teorie množin pro učitelské studium.
Poslední úprava: Macharová Dana, JUDr. (10.10.2012)
Cíl předmětu

Naučit základy logiky a teorie množin

Poslední úprava: Macharová Dana, JUDr. (10.10.2012)
Podmínky zakončení předmětu -

Předmět je zakončen zkouškou.

Poslední úprava: Gregor Petr, doc. Mgr., Ph.D. (11.06.2019)
Literatura
  • Štěpánek,P.: Matematická logika (skriptum), SPN 1982
  • Balcar,B., Štěpánek,P.: Teorie množin, Academia, Praha 1986
  • Čuda K.: Základy logického kalkulu
  • Čuda K.: Základy teorie množin

Poslední úprava: Macharová Dana, JUDr. (10.10.2012)
Požadavky ke zkoušce

Předmět bude zakončen písemnou zkouškou, při které se od studentů budou definice, věty a důkazy z přednášky; přesný seznam požadavků bude studentům průběžně upřesňován na přednáškách a bude k dispozici na webu vyučujícího. V případě nerozhodného výsledku u písemné zkoušky může v některých případech dojít též na ústní část zkoušky. Typicky bude student žádán, aby upřesnil nebo dovysvětlil nejasné body z písemky; může však dojít i na další úlohy.

Poslední úprava: Gregor Petr, doc. Mgr., Ph.D. (13.10.2017)
Sylabus -

1. Výrokový počet (jazyk, základní důkazové prostředky, věta dualitě a normální formě).

2. Predikátový počet (jazyk, kalkulace s kvantifikátory, věta prenexní formuli).

3. Axiomatická teorie (dokazatelnost, nezávislost, bezespornost a úplnost axiomatické teorie).

4. Axiomatická teorie tříd a množin (operace s třídami a množinami, relace, uspořádní, zobrazení).

5. Booleovské kalkulace.

6. Ekvivalence a subvalence, Cantor - Bernsteinova věta, Cantorova věta.

7. Konečné množiny.

8. Dobře uspořádané množiny.

9. Peanova aritmetika a model přirozených čísel v teorii množin.

10. Axiom nekonečna a spočetné množiny.

11. Čísla celá, racionální a reálná.

12. Kardinální čísla (operace, uspořádání).

13. Ordinální čísla (operace, uspořádání).

14. Axiom výběru a jeho ekvivalenty.

Poslední úprava: T_KTI (16.04.2013)