PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Analýza censorovaných dat - NMST531
Anglický název: Censored Data Analysis
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2023
Semestr: zimní
E-Kredity: 5
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Další informace: http://www.karlin.mff.cuni.cz/~kulich/vyuka/cens/index.html
Garant: doc. RNDr. Daniel Hlubinka, Ph.D.
Třída: M Mgr. FPM
M Mgr. FPM > Povinně volitelné
M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Kategorizace předmětu: Matematika > Pravděpodobnost a statistika
Prerekvizity : {Prerekvizita pro NMST531}, NMSA407
Je neslučitelnost pro: NMST511
Je záměnnost pro: NMST511
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Předmět propojuje teorii pravděpodobnosti (martingaly), teoretickou statistiku (pořadové testy), teorii spolehlivosti a analýzu přežití. Proberou se čítací procesy, odhady funkce přežití a kumulativního rizika, parametrické modely, dvou a vícevýběrové testy na censorovaná data, regresní modely. Cvičení obsahuje teoretické příklady i praktické aplikace.
Poslední úprava: G_M (28.05.2013)
Cíl předmětu -

Seznámit studenty s metodami pro analýzu censorovaných dat.

Poslední úprava: T_KPMS (07.05.2015)
Podmínky zakončení předmětu - angličtina

The exercise class credit is necessary to sign up for the exam.

Requirements for exercise class credit: The credit for the exercise class will be awarded to the student who hands in a satisfactory solution to each assignment by the prescribed deadline.

The nature of these requirements precludes any possibility of additional attempts to obtain the exercise class credit.

Poslední úprava: Kulich Michal, doc. Mgr., Ph.D. (24.09.2020)
Literatura

Fleming TR and Harrington DP "Counting Processes and Survival Analysis" Wiley, New York, 1991.

Kalbfleisch JD and Prentice RL "The Statistical Analysis of Failure Time Data". Wiley, New York, 2002.

Poslední úprava: T_KPMS (16.09.2014)
Metody výuky -

Přednáška + cvičení.

Poslední úprava: T_KPMS (12.05.2014)
Požadavky ke zkoušce - angličtina

The form of the exam will be determined later according to the SARS-CoV-2 prevalence at the time. Requirements for the oral comprise the entire extent of the lecture.

Poslední úprava: Kulich Michal, doc. Mgr., Ph.D. (24.09.2020)
Sylabus -

1. Censorovaná náhodná veličina.

2. Parametrické modely pro censorovaná data.

3. Čítací procesy a martingaly pro censorovaná data.

3. Neparametrické odhady rizikové funkce a funkce přežití.

4. Neparametrické dvouvýběrové testy.

5. Coxův regresní model.

Poslední úprava: Kulich Michal, doc. Mgr., Ph.D. (24.09.2020)
Vstupní požadavky - angličtina

This course assumes the knowledge of linear regression theory and, preferably but not necessarily, generalized linear models. Intermediate-level knowledge of probability theory, including continuous martingales, and counting process theory is also required.

Poslední úprava: Kulich Michal, doc. Mgr., Ph.D. (25.05.2018)
 
Univerzita Karlova | Informační systém UK