Moderní metody statické inference založené na teorii maximální věrohodnosti a jejich zobecněních. Metody pro
data s chybějícími pozorováními.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Modern methods of statistical inference based on maximum likelihood theory and its generalizations. Methods for
missing observations.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Cíl předmětu -
Studenti se seznámí s principy pokročilých metod statistické inference, na kterých jsou postaveny metody analýzy dat.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
To understand principles of advanced methods of statistical inference that are used in data analysis.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Podmínky zakončení předmětu -
Před ústní zkouškou je třeba získat zápočet.
K získání zápočtu je třeba získat alespoň 100 bodů ze zadaných domácích úkolů, přičemž student nemusí řešit všechny úkoly. Jeden úkolů je však povinný. Tento úkol je zapotřebí uspokojivě vyřešit, přičemž student bude mít u tohoto úkolu možnost jedné opravy.
Povaha kontroly studia předmětu vylučuje opakování této kontroly.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (02.12.2020)
The exercise class credit is necessary to sign up for the exam.
To get the credit for the exercise class the student needs to get 100 points from the assigned homework tasks. During the semester a number of homework assignments will be given. It will be indicated how many points the student can get for each assignment. In total, it is possible to get 140 points (or a few more). Solutions to homework assignments have to be delivered at the beginning of the exercise class (usually there is one week to work on the problem). No points are given to the solutions that are delivered after the deadline.
To get the exercise class credit it is needed:
• to obtain at least 100 points in total; and
• to solve correctly one indicated assignment.
Although in general one can skip some of the assignments, the indicated assignments (EM algorithm) are compulsory. For the compulsory assignment, sending an R-code (that works) is required. In case that a compulsory assignment is not solved correctly, there will be exactly one possibility to improve/correct your solution. No additional points are given for the corrected version.
The nature of these requirements precludes any possibility of additional attempts to obtain the exercise class credit.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (02.12.2020)
Literatura -
ANDĚL, J.: Základy matematické statistiky. Matfyzpress, Praha, 2007.
LEHMANN, E. L. and CASSELLA, G. (1998). Theory of point estimation. Springer, New York.
MCLACHLAN, G. J., KRISHNAN, T.: The EM Algorithms and Extensions, Wiley, 2008
Doplňující literatura:
KOENKER, R.: Quantile regression. Cambridge university press, 2005.
LITTLE, R.J.A., RUBIN, D.B.: Statistical analysis with missing data. New York: John Wiley & Sons, 1987
PAWITAN, Y.: In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, 2001.
SERFLING, R. J.: Approximation Theorems of Mathematical Statistics, Wiley, 1980.
VAN DER VAART, A. W.: Asymptotic statistics. Cambridge university press, 2000.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (03.12.2020)
LEHMANN, E. L. and CASSELLA, G. (1998). Theory of point estimation. Springer, New York.
MCLACHLAN, G. J., KRISHNAN, T.: The EM Algorithms and Extensions, Wiley, 2008
Additional supporting literature:
KOENKER, R.: Quantile regression. Cambridge university press, 2005.
LITTLE, R.J.A., RUBIN, D.B.: Statistical analysis with missing data. New York: John Wiley & Sons, 1987
PAWITAN, Y.: In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, 2001.
SERFLING, R. J.: Approximation Theorems of Mathematical Statistics, Wiley, 1980.
VAN DER VAART, A. W.: Asymptotic statistics. Cambridge university press, 2000.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (03.12.2020)
Metody výuky -
Přednáška+cvičení.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Lecture+exercises.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Požadavky ke zkoušce -
Pokud to situace umožní, tak zkouška má dvě části - písemnou a ústní. Ke složení zkoušky je zapotřebí zvládnout obě části této zkoušky.
Pokud by situace neumožňovala osobní přítomnost studenta, bude zkouška provedena vhodnou distanční formou.
Požadavky na zkoušku odpovídají tomu, co bylo v rámci kurzu odpředneseno.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
The exam will be organized as follows. First, an example will be given and there will be about 50 minutes to solve this example. After handing in this example, the student can make a short break, after which he/she gets two theoretical questions. To pass the exam, the student has to prove that he/she can solve the example as well as answer the theoretical questions in a satisfactory way.
The requirements for the oral exam are in agreement with the syllabus of the course as presented during lectures.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
Sylabus -
Teorie maximální věrohodnosti
Profilová, podmíněná a marginální věrohodnost
EM-algoritmus
Metody pro chybějící data
M-odhad a Z-odhady
Kvantilová regrese
Robustní odhady polohy a regrese
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (23.05.2025)
Clippings from the asymptotic theory - Delta Theorem and Moment Estimators
Theory of maximum likelihood
Profile, conditional and marginal likelihood
EM-algorithm
Methods for missing data
M-estimators and Z-estimators
Quantile regression
Robust estimation of location and regression
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (23.05.2025)
Vstupní požadavky -
Předpokládá se již dobrá znalost matematické statistiky a pravděpodobnosti. Tyto znalosti jsou pokryty předměty:
Matematická statistika 1 a 2 (NMSA331 and NMSA332), Teorie pravděpodobnosti 1 (NMSA333), Lineární regrese (NMSA407).
Základní vstupní požadavky docela dobře pokrývá kniha: Anděl, J. (2007). Základy matematické statistiky. Matfyzpress.
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)
It is assumed that the students have already a very solid knowledge of statistics and probability theory.
This is covered for instance by
Mukhopadhyay, N. (2000). Probability and statistical inference. CRC Press - almost the whole book except for Chapters 10 and 13
Khuri, A. I. (2009). Linear model methodology. Chapman and Hall/CRC - the knowledge of Chapters 1 - 6 is sufficient.
The students are prepared for the course if they pass the following courses:
Mathematical Statistics 1 and 2 (NMSA331 and NMSA332),
Probability Theory 1 (NMSA333),
Linear regression (NMSA407).
Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.11.2020)