Úvod do optimalizace - NMSA336
Anglický název: Introduction to Optimisation
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2020
Semestr: letní
E-Kredity: 4
Rozsah, examinace: letní s.:2/1, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Garant: doc. RNDr. Martin Branda, Ph.D.
Třída: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 2. ročník
M Bc. OM
M Bc. OM > Povinně volitelné
M Bc. OM > Zaměření STOCH
Kategorizace předmětu: Matematika > Optimalizace
Prerekvizity : {Aspoň jedna lineární algebra}, {Aspoň jedna analýza nebo kalkulus 1. roč.}
Neslučitelnost : NMFM204
Záměnnost : NMFM204
Je neslučitelnost pro: NMFM204, NMSA936
Je záměnnost pro: NMFM204, NMAN007, NMSA936
Ve slož. prerekvizitě: NMSA349
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základní přednáška z optimalizace. Doporučeno pro bakalářský obor Obecná matematika, zaměření Stochastika. Povinný předmět bakalářského oboru Finanční matematika.
Poslední úprava: G_M (14.05.2013)
Cíl předmětu -

Vyložit základní postupy a metody používané při hledání optimálního řešení zadané úlohy. Studenti se dozvědí potřebnou teorii a dané postupy si na numerických příkladech osvojí.

Poslední úprava: G_M (27.04.2012)
Podmínky zakončení předmětu -

Předmět je zakončen zápočtem a zkouškou. Podmínky pro udělení zápočtu jsou následující:

1. Odevzdání správně vypracovaného domácího úkolu na simplexový algoritmus (s možností jedné opravy).

2. Získání alespoň 80% bodů z pěti domácích úloh (bez možnosti opravy). Termíny odevzdání úkolů jsou určeny cvičícím.

Získání zápočtu je nutnou podmínkou účasti na zkoušce.

Je pravděpodobné, že se značná část zkoušek může konat distanční formou. Závisí to na vývoji aktuální situace a o jakékoli změně budete včas informováni.

Poslední úprava: Branda Martin, doc. RNDr., Ph.D. (28.04.2020)
Literatura -

Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M.: Nonlinear programming: theory and algorithms. Wiley, New York, 1993.

Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont, 1999.

Dupačová, J., Lachout, P.: Úvod do optimalizace. MatfyzPress, Praha, 2011.

Plesník, J.; Dupačová, J.; Vlach, M.: Lineárne programovanie. Alfa, Bratislava, 1990.

Rockafellar, T.: Convex Analysis. Springer-Verlag, Berlin, 1975.

Wolsey, L.A.: Integer Programming, Wiley, New York, 1998.

Poslední úprava: T_KPMS (25.04.2016)
Metody výuky -

Přednáška+cvičení.

Poslední úprava: T_KPMS (15.05.2012)
Požadavky ke zkoušce -

Zkouška probíhá písemně. Test se skládá ze tří početních příkladů, které byly typově probrány na cvičení. Příklad obsahuje i otázku na odpovídající část teorie probranou na přednášce. Pro úspěšné splnění je nutné získat alespoň 60% bodů.

Je pravděpodobné, že se značná část zkoušek může konat distanční formou. Závisí to na vývoji aktuální situace a o jakékoli změně budete včas informováni.

Poslední úprava: Branda Martin, doc. RNDr., Ph.D. (28.04.2020)
Sylabus -

1. Optimalizační úlohy a jejich formulace. Aplikace v ekonomii, financích, dopravě a matematické statistice.

2. Základy konvexní analýzy (konvexní množiny, konvexní funkce více proměnných).

3. Úloha lineárního programování (struktura množiny přípustných řešení, přímá metoda řešení, simplexová metoda, dualita, Farkasova věta).

4. Úlohy celočíselného lineárního programování (aplikace, algoritmus branch-and-bound).

5. Úloha nelineárního programování (lokální a globální podmínky optimality, podmínky regularity).

6. Kvadratické programování jako speciální typ úlohy nelineárního programování.

Poslední úprava: T_KPMS (25.04.2016)