PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Matematická statistika 1 - NMSA331
Anglický název: Mathematical Statistics 1
Zajišťuje: Katedra pravděpodobnosti a matematické statistiky (32-KPMS)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2024
Semestr: zimní
E-Kredity: 8
Rozsah, examinace: zimní s.:4/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Další informace: https://www.karlin.mff.cuni.cz/~komarek/vyuka/2024_25/nmsa331-2024.html
Garant: doc. RNDr. Arnošt Komárek, Ph.D.
Vyučující: doc. RNDr. Arnošt Komárek, Ph.D.
doc. Ing. Marek Omelka, Ph.D.
Třída: M Bc. OM
M Bc. OM > Povinně volitelné
M Bc. OM > Zaměření STOCH
Kategorizace předmětu: Matematika > Pravděpodobnost a statistika
Prerekvizity : NMSA202
Je korekvizitou pro: NMSA332
Je prerekvizitou pro: NMSA351
Je záměnnost pro: NSTP191, NSTP201
Ve slož. prerekvizitě: NMSA349
Anotace -
Základy statistických metod. Doporučeno pro bakalářský obor Obecná matematika, zaměření Stochastika. Vyžaduje znalosti z předmětu NMSA202 Pravděpodobnost a matematická statistika.
Poslední úprava: T_KPMS (02.06.2016)
Cíl předmětu -

Studenti se seznámí se základními metodami statistické analýzy dat. To jim umožní pochopit podstatu teoretických výsledků presentovaných v dalších přednáškách

Poslední úprava: G_M (16.05.2012)
Podmínky zakončení předmětu -

Podmínky získání zápočtu:

1. Úspěšné napsání zápočtové písemné práce (alespoň 60 bodů ze 100), přičemž bude právě jedna možnost opravy.

V případě, že nebude možná prezenční účast na písemce, tak písemka proběhne vhodnou distanční formou.

2. Uspokojivé vyřešení (alespoň na 60% z možných bodů) každé ze dvou domácích úloh. Budou zadány dvě domácí úlohy, z nichž lze získat celkem 100 bodů (40 bodů za první úlohu, 60 za druhou). Jako uspokojivé řešení je považován celkový zisk alespoň 60 bodů za obě úlohy dohromady.

Povaha kontroly studia předmětu vylučuje opakování této kontroly.

Zápočet je nutnou podmínkou pro účast na zkoušce.

Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (30.09.2022)
Literatura -

Anděl J.: Matematická statistika, SNTL/ALFA, Praha 1978

Anděl J.: Statistické metody. Matfyzpress, Praha 2007

Anděl, J.: Základy matematické statistiky. Matfyzpress, Praha 2013

Poslední úprava: Anděl Jiří, prof. RNDr., DrSc. (09.09.2013)
Metody výuky -

Přednáška+cvičení.

Poslední úprava: T_KPMS (11.05.2012)
Požadavky ke zkoušce -

Předmětem zkoušky bude celý rozsah přednášky. Je třeba znát všechny podstatné definice, věty a tvrzení (včetně předpokladů), chápat jejich vzájemné vztahy a alespoň rámcově vysvětlit jejich zdůvodnění (důkazy). Dále se vyžaduje schopnost zvolit vhodný postup pro statistickou analýzu reálného problému a diskutovat výhody a nevýhody různých alternativních řešení (existují-li).

Zkouška sestává z písemné a ústní části. Písemná část předchází části ústní a její nesplnění znamená, že celá zkouška je hodnocena známkou nevyhověl(a) a ústní částí již nepokračuje. Nesložení ústní části zkoušky znamená, že při příštím termínu je nutno opakovat obě části zkoušky, tj. písemnou i ústní. Známka ze zkoušky se stanoví na základě bodového ohodnocení písemné i ústní části.

Písemná část sestává z několika otázek, které vycházejí z odpřednesené látky a současně odpovídají tomu, co bylo procvičováno na cvičení.

Pokud situace neumožní prezenční zkoušení, bude zkoušení provedenou vhodnou distanční formou.

Požadavky u ústní části zkoušky odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce.

Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (17.09.2020)
Sylabus -

1. Náhodný výběr. Rozdělení výběrového průměru a rozptylu. Pořádkové statistiky.

2. Bodové a intervalové odhady - základní principy. Empirické odhady, výběrové momenty a kvantily.

3. Principy testování hypotéz.

4. Jednovýběrové a párové metody pro kvantitativní data.

5. Dvouvýběrové metody pro kvantitativní data.

6. Jednovýběrové a dvouvýběrové metody pro binární data.

7. Multinomické rozdělení a kontingenční tabulky.

8. Vícevýběrové metody pro kvantitativní data. Analýza rozptylu. Principy mnohonásobných porovnávání.

9. Korelační analýza.

Poslední úprava: Omelka Marek, doc. Ing., Ph.D. (22.09.2019)
 
Univerzita Karlova | Informační systém UK