PředmětyPředměty(verze: 957)
Předmět, akademický rok 2023/2024
   Přihlásit přes CAS
Moderní algoritmy numerické optimalizace - NMOD038
Anglický název: Modern Algorithms in Numerical Optimisation
Zajišťuje: Ústav teorie informace a automatizace AV ČR, v.v.i. (32-UTIAAV)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2022
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: zrušen
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Garant: prof. Michal Kočvara, DrSc.
Kategorizace předmětu: Matematika > Optimalizace
Záměnnost : NMNV627
Je neslučitelnost pro: NMNV627
Je záměnnost pro: NMNV627
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Přednáška je určena pro: 4. a 5.ročník a PGDS Anotace: Cílem přednášky je seznámit studenty s moderními algoritmy nelineární optimalizace. Přednáška bude zaměřena na efektivní řešení rozsáhlých problémů a bude ilustrována úlohami z praxe. Předpokládané znalosti: základní kurs analýzy (směrové derivace, tot. diferenciál, věty o střední hodnotě a implicitní funkci) a lineární algebry (norma matice, vlastní čísla)
Poslední úprava: G_M (07.05.2003)
Literatura

Literatura: J. Nocedal, S. Wright: Numerical Optimization. Springer, 1999.

Poslední úprava: G_M (07.05.2003)
Sylabus -

Konvexní množiny, konvexní funkce. Základy nepodmíněné optimalizace, jednorozměrné úlohy (line-search), metody typu trust-region. Praktické Newtonovy metody. Základy podmíněné optimalizace, podmínky optimality. Kvadratické programování, sekvenční kvadratické programování. Metody penalizační a metody vnitřního bodu pro konvexní a nekonvexní podmíněnou optimalizaci. Semidefinitní programováni.

Poslední úprava: G_M (07.05.2003)
 
Univerzita Karlova | Informační systém UK