|
|
|
||
Kurz se zabývá nelineárními vektorovými booleovskými funkcemi.
Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (09.05.2018)
|
|
||
This course is on the mathematical analysis of cryptographically important (Boolean) functions on vector spaces over finite fields and their relationship to combinatorics, algebra and geometry.
Optimal Boolean functions that are invulnerable to differential, linear, algebraic and correlation attacks are discussed. These include bent and perfect nonlinear functions.
The relevant combinatorial objects that we will study include Latin squares, Hadamard matrices, difference sets, orthogonal arrays and block designs as well as projective planes from finite geometry and algebraic field-like structures such as finite semifields and quasifields. Poslední úprava: Göloglu Faruk, doc., Dr. rer. nat. (01.10.2024)
|
|
||
Grading: • Final, written/oral (60%) • 3 homeworks (40%) Poslední úprava: Göloglu Faruk, doc., Dr. rer. nat. (01.10.2024)
|
|
||
Textbooks: Lecture notes will be provided every week after lectures. The following textbooks are going to be used. • Hall, Marshall, Jr.: Combinatorial theory. Second edition John Wiley & Sons, Inc., New York, 1986. xviii+440 pp. • van Lint, J. H., Wilson, R. M.: A course in combinatorics. Second edition Cambridge University Press, Cambridge, 2001. xiv+602 pp. • Hou, Xiang-dong: Lectures on finite fields. Grad. Stud. Math., 190 American Mathematical Society, Providence, RI, 2018. x+229 pp. • Stinson, Douglas R.: Combinatorial designs and cryptography, revis- ited. 50 years of combinatorics, graph theory, and computing, 335–357. Discrete Math. Appl. (Boca Raton) CRC Press, Boca Raton, FL, 2020. Poslední úprava: Göloglu Faruk, doc., Dr. rer. nat. (01.10.2024)
|
|
||
Zkouška má ústní formu. Její požadavky odpovídají obsahu přednesené látky. Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (10.06.2019)
|
|
||
Course Outline: i. Introduction (1 week) ii. Bent and perfect nonlinear functions (2–3 weeks) iii. Finite fields and polynomials over finite fields (1 week) iv. Notions of equivalence for Boolean functions (1 week) v. Bent functions, Hadamard matrices and difference sets (2 weeks) vi. LFSRs (linear feedback shift registers), pseudo-noise sequences (1 week) vii. Difference sets in cyclic groups (1 week) viii. Correlation immunity, orhogonal arrays (1 week) ix. Latin squares, secret sharing (1 week) x. Möbius inversion, algebraic immunity (1 week) xi. Projective planes, planar functions, semifields, quasifields (1–2 weeks) Poslední úprava: Göloglu Faruk, doc., Dr. rer. nat. (01.10.2024)
|