|
|
|
||
Uvodni kurz matematicke homogenizace.
Poslední úprava: Pyrih Pavel, doc. RNDr., CSc. (14.05.2019)
|
|
||
Cioranescu, Doina; Donato, Patrizia: An introduction to homogenization. Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999.
Braides, Andrea; Defranceschi, Anneliese: Homogenization of multiple integrals. Oxford Lecture Series in Mathematics and its Applications, 12. The Clarendon Press, Oxford University Press, New York, 1998. Poslední úprava: Krömer Stefan (26.08.2021)
|
|
||
The course will be held in class. If the number of participants is very low, guided reading is a possible alternative.
For questions please contact me directly by email. Home page: http://www.utia.cas.cz/people/kr-mer Poslední úprava: Krömer Stefan (13.09.2024)
|
|
||
Budou probírány základy matematicke homogenizace: Basic periodic oscillations; Examples for periodic composites; Periodic homogenization for elliptic equations: formal expansions and correctors; Notions of convergence for homogenization problems: G-convergence, H-convergence, Gamma-convergence; Variational periodic homogenization for convex functionals, weak two-scale convergence Poslední úprava: Pyrih Pavel, doc. RNDr., CSc. (14.05.2020)
|
|
||
Necessary prior knowledge: Functional analysis (weak topologies) and the Sobolev space W^{1,2}
Useful prior knowledge: Elliptic PDEs (weak formulation, existence, uniqueness), Calculus of Variations (direct methods) Poslední úprava: Kaplický Petr, doc. Mgr., Ph.D. (07.09.2018)
|