Komutativní algebra 1 - NMAG460
Anglický název: Commutative Algebra 1
Zajišťuje: Katedra algebry (32-KA)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2022
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Způsob výuky: prezenční
Garant: prof. RNDr. Tomáš Kepka, DrSc.
Třída: M Mgr. MSTR
Kategorizace předmětu: Matematika > Algebra
Je korekvizitou pro: NMAG561
Je záměnnost pro: NALG015
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základy komutativní algebry, celistvá rozšíření, valuační obory, noetherovské a Dedekindovy okruhy. Předpokládá se znalost v rozsahu kurzu Algebra II (NALG027).
Poslední úprava: T_KA (14.05.2013)
Podmínky zakončení předmětu -

Předmět je zakončen písemnou zkouškou.

Poslední úprava: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (10.06.2019)
Literatura

L. Bican, T. Kepka, Komutativní algebra I. (skriptum)

L. Bican, T. Kepka, Komutativní algebra II. (skriptum)

L. Procházka a kol., Algebra

N. Bourbaki, Algébre commutative

Poslední úprava: T_KA (14.05.2013)
Požadavky ke zkoušce -

Zkouška sestává z písemné části a známka se stanoví na základě bodového hodnocení. Příklady odpovídají sylabu.

Poslední úprava: Kepka Tomáš, prof. RNDr., DrSc. (06.10.2017)
Sylabus -

1. Základní pojmy.

a) Maximální ideály, prvoideály a prvoradikál.

b) Lomené ideály.

c) Divizory.

2. Celistvá rozšíření.

a) Celistvá rozšíření a uzávěry.

b) Slabě celistvá rozšíření a uzávěry.

c) Celistvá rozšíření, podílové okruhy a polynomy.

d) Rozšíření homomorfizmů.

3. Valuační obory.

a) Základní vlastnosti.

b) Valuační obory a celistvý uzávěr.

c) Základní konstrukce.

d) Mocninné řady.

e) Obory konečně generované nad tělesy.

4. Noetherovské okruhy.

a) Základní vlastnosti.

b) Věta Artinova - Reesova.

c) Primární rozklady.

5. Dedekindovy okruhy.

a) Invertibilní ideály.

b) Dedekindovy obory.

c) Dedekindovy okruhy.

6. Celistvé uzávěry noetherovských oborů.

a) Separabilní případ.

b) Věta Krullova - Akidzukiho.

Poslední úprava: T_KA (14.05.2013)