PředmětyPředměty(verze: 957)
Předmět, akademický rok 2023/2024
   Přihlásit přes CAS
Statistické metody zpracování experimentálních dat - NMAF017
Anglický název: Statistical Methods of Experimental Data Processing
Zajišťuje: Katedra fyziky nízkých teplot (32-KFNT)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2019
Semestr: zimní
E-Kredity: 3
Rozsah, examinace: zimní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Další informace: https://physics.mff.cuni.cz/kfnt/vyuka/statisticke_metody/index.html
Garant: doc. Ing. František Bečvář, DrSc.
prof. Mgr. Jakub Čížek, Ph.D.
Vyučující: prof. Mgr. Jakub Čížek, Ph.D.
Kategorizace předmětu: Fyzika > Matematika pro fyziky
Anotace -
Základní pojmy pravděpodobnosti - náhodné veličiny, jejich rozdělení, momenty. Odhad parametrů metodami maximální věrohodnosti a nejmenších čtverců. Testování hypotéz. Zpracování experimentálních dat - analýza regrese, interpolace a extrapolace dat, redukce dat, rozklad spekter.
Poslední úprava: T_KFNT (06.05.2003)
Cíl předmětu -

Student získá základní znalosti o statistické zpracování experimentálních dat, rozdělení náhodné proměnné,

fitování teoretických modelů a závislostí, odhadu parametrů, Monte Carlo modelování a testování hypotéz.

Poslední úprava: KFNTJC/MFF.CUNI.CZ (16.04.2008)
Podmínky zakončení předmětu -

ústní zkouška

Poslední úprava: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Literatura -

W.T. Eadie et al., "Statistical Methods in Experimental Physics" (North Holland, Amsterdam, 1971).

G. Cowan, "Statistical Data Analysis", (Oxford Science Publications, Clarendon Press, Oxford 1998).

R.J. Barlow, "Statistics. A Guide to the Use of Statistical Methods in the Physical Sciences", (John Wiley & Sons, Chichester 1989).

Poslední úprava: KFNTJC/MFF.CUNI.CZ (16.04.2008)
Metody výuky -

přednáška

Poslední úprava: KFNTJC/MFF.CUNI.CZ (16.04.2008)
Požadavky ke zkoušce -

Zkouška probíhá ústní formou v rozsahu témat, která byla prezentována na přednášce.

Poslední úprava: Čížek Jakub, prof. Mgr., Ph.D. (06.10.2017)
Sylabus -
  • Základní pojmy: pravděpodobnost, pravděpodobnostní míra, náhodná proměnná, hustota pravděpodobnosti, náhodný výběr, parametrizace hustoty pravděpodobnosti.
  • Podmíněná a marginální pravděpodobnost. Bayesův teorém a jeho využití.
  • Očekávaná hodnota a rozptyl náhodné proměnné. Centrální a necentrální momenty. Kovarianční matice náhodných proměnných. Pojem statistické nezávislosti. Rozptyl veličiny, která je funkcí několika náhodných proměnných. Transformace náhodných proměnných. Konvoluce a její vastnosti.
  • Charakteristické funkce náhodných proměnných. Použití těchto funkcí.
  • Základní statistická rozdělení (rovnoměrné, binomické, multinomické, Poissonovo, normální, chi-kvadrát, Studentovo, Fisherovo, Cauchyho, log-normální, atd.). Jejich základní vlastnosti. Situace, kdy se s nimi setkáme.
  • Cebntrální limitní teorém a příklad jeho použití - Odhady neznámých parametrů. Konzistentnost a nepředpojatost odhadů. Některé metody konstrukce statistik sloužících k odhadu parametrů.
  • Věrohodnostní funkce a metoda maximální věrohodnosti.
  • Metoda nejmenších čtverců,její obecná formulace. Základní vlastnosti kvadratického funkcionálu. Gauss-Markovův teorém. Lineární model: odhady parametrů, jejich kovarianční matice, zhlazování empirických funkčních hodnot, stanovení věrohodnostního pásu, problém numerické stability a jeho řešení.
  • Statistické modely a jejich testování. Pojem testující veličiny. Příklady testování hypotéz.

Poslední úprava: KFNTJC/MFF.CUNI.CZ (16.04.2008)
 
Univerzita Karlova | Informační systém UK