PředmětyPředměty(verze: 957)
Předmět, akademický rok 2023/2024
   Přihlásit přes CAS
Analytická a kombinatorická teorie čísel - NDMI045
Anglický název: Analytic and Combinatorial Number Theory
Zajišťuje: Katedra aplikované matematiky (32-KAM)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2018
Semestr: letní
E-Kredity: 3
Rozsah, examinace: letní s.:2/0, Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Způsob výuky: prezenční
Další informace: http://kam.mff.cuni.cz/~klazar/AKTC19.html
Garant: doc. RNDr. Martin Klazar, Dr.
Třída: Informatika Mgr. - Diskrétní modely a algoritmy
M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Kategorizace předmětu: Informatika > Diskrétní matematika
Anotace -
V přednášce uvedeme některé klasické i novější výsledky analytické a kombinatorické teorie čísel.
Poslední úprava: T_KAM (27.04.2005)
Cíl předmětu -

Studenti se seznámí s několika základními výsledky z analytické a kombinatorické teorie čísel a s odpovídajícími technikami.

Poslední úprava: T_KAM (20.04.2008)
Podmínky zakončení předmětu -

Ústní zkouška s písemnou přípravou.

************************************************************************

Aktualizace v souvislosti s koronavirovou pandemií a návaznými opatřeními na jaře

a v létě r. 2020. Forma zkoušky (kontaktní či distanční) bude určena pro každý

termín zvlášť podle aktuálních okolností, forma a průběh zkoušení bude stanovena při vypsání příslušného termínu v SISu.

Kontaktní zkouška bude písemná s možností ústního dozkoušení. U tohoto předmětu se nicméně jeví pravděpodobnou

kontaktní forma v malých skupinách (<6, <11 lidí?).

Poslední úprava: Klazar Martin, doc. RNDr., Dr. (30.04.2020)
Literatura -

G. Tenenbaum: Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press 1995.

Další literatura bude uváděna na přednášce.

Poslední úprava: T_KAM (27.04.2005)
Požadavky ke zkoušce -

Zkouška je ústní, s písemnou přípravou. Konkrétní požadavky jsou/budou na stránce předmětu,

viz stránka vyučujícího.

************************************************************************

Aktualizace v souvislosti s koronavirovou pandemií a návaznými opatřeními na jaře

a v létě r. 2020. Forma zkoušky (kontaktní či distanční) bude určena pro každý

termín zvlášť podle aktuálních okolností, forma a průběh zkoušení bude stanovena při vypsání příslušného termínu v SISu.

Kontaktní zkouška bude písemná s možností ústního dozkoušení. U tohoto předmětu se nicméně jeví pravděpodobnou

kontaktní forma v malých skupinách (<6, <11 lidí?).

Poslední úprava: Klazar Martin, doc. RNDr., Dr. (30.04.2020)
Sylabus -

Témata se obměňují a hrubý plán přednášky bude včas upřesněn. Následují příklady možných témat. Prvočíselná věta. Dirichletova věta o prvočíslech v aritmetické posloupnosti. Iracionalita čísla zeta(3). Základy teorie modulárních forem. Snirelmanova věta o prvočíslech a Selbergovo síto. Vinogradovova věta o třech prvočíslech. Freimanova věta z aditivní teorie čísel. Důkaz T. Taa Szemerediho věty o aritmetických posloupnostech, ...

Poslední úprava: T_KAM (27.04.2005)
 
Univerzita Karlova | Informační systém UK