PředmětyPředměty(verze: 962)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
V sobotu dne 19. 10. 2024 dojde k odstávce některých součástí informačního systému. Nedostupná bude zejména práce se soubory v modulech závěrečných prací. Svoje požadavky, prosím, odložte na pozdější dobu.
Získávání informace z dat DPZ - MZ370P08
Anglický název: Extraction of Information from Remote Sensing Data
Český název: Získávání informace z dat DPZ
Zajišťuje: Katedra aplikované geoinformatiky a kartografie (31-370)
Fakulta: Přírodovědecká fakulta
Platnost: od 2024
Semestr: letní
E-Kredity: 8
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/4, Z+Zk [HT]
Počet míst: 38
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: zrušen
Jazyk výuky: čeština
Poznámka: povolen pro zápis po webu
Garant: doc. Ing. Jan Kolář, CSc.
Výsledky anket   Termíny zkoušek   Rozvrh   
Literatura

Richards, J. A., Jia, X. (2006). Remote sensing digital image analysis, 4. vydání, Springer-Verlag Berlin Heidelberg

Schowengerdt, R. A. (2006). Remote sensing: models and methods for image processing. Elsevier

Jones, S., & Reinke, K. (Eds.) (2009): Innovations in remote sensing and photogrammetry. Springer Science & Business Media

Vali, A., Comai, S., Matteucci, M. (2020): Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sensing12(15), 2495

Poslední úprava: Potůčková Markéta, Ing., Ph.D. (12.02.2021)
Požadavky ke zkoušce

Podmínky udělení zápočtu:
- aktivní účast na cvičeních
- písemné zpracování úloh dle pokynů v zadání
- včasné odevzdání zadaných úloh (termín odevzdání je součástí zadání úlohy a je uveden v systému Moodle)

Zkouška z předmětu se skládá z písemné a ústní části. Splnění písemné části je podmínkou pro postup k ústní části zkoušky.

Za současné epidemiologické situace proběhne zkouška (včetně písemné části) online.

Poslední úprava: Potůčková Markéta, Ing., Ph.D. (12.02.2021)
Sylabus

Přednáška se zabývá analýzou dat DPZ na pokročilé úrovni. Hlavním cílem je uvést studenta do problematiky obrazové analýzy v kontextu extrakce informace o přírodních zdrojích z dat DPZ včetně témat:

  • Radiometrické korekce obrazu I (konstrukce radiometru – multispektrální měření, relativní hodnoty, kalibrace, absolutní hodnoty, chyby/šum detektoru, poměr signálu k šumu)
  • Radiometrické korekce obrazu II (korekce na dvousměrovou odrazivost, atmosférická korekce vč. algoritmů pro její řešení)
  • Geometrické korekce (geometrická zkreslení, geometrické transformace pro georeferencování, interpolační metody pro překreslení)
  • Zvýraznění multispektrálního obrazu (indexy, PCA, TCT, pansharpening, …)
  • Klasifikace obecně – definice a přístupy, příznaky (spektrální, texturální, geometrické), problém neurčitosti hranic objektů/tříd, klasifikační legenda, základní klasifikační algoritmy (mindist, maxlikelihood, K-means, ISODATA), fuzzy přístup, linear unmixing
  • Objektový přístup ke klasifikaci
  • Principy dalších algoritmů strojového učení používaných pro klasifikaci obrazu I (random forest, SVM)
  • Principy dalších algoritmů strojového učení používaných pro klasifikaci obrazu II (CNN)
  • Pořizování a zpracování hyperspektrálních dat. Modely přenosu záře (radiative transfer models), empirické modely odhadu kvantitativní informace z dat DPZ
  • Klasifikace časových řad, kombinace dat z různých senzorů a různého rozlišení


Praktická cvičení rozvíjejí teoretické poznatky formou úloh zaměřených na zpracování obrazových dat pomocí programů eCognition, ENVI, Matlab a Snap.

V LS 2020/21 bude předmět až do odvolání vyuřčovám online v čase rozvrhované výuky. Odkaz na Google Meet bude zapsaným studentům zaslán prostřednictvím SIS před zahájením výuky.

Poslední úprava: Potůčková Markéta, Ing., Ph.D. (12.02.2021)
 
Univerzita Karlova | Informační systém UK