Tento prakticky orientovaný kurz si klade za cíl seznámit posluchače se základními principy a postupy hydrologického modelování. Během přednášky budou posluchači seznámeni s teoretickými aspekty a metodami modelování hydrologických procesů a zároveň budou mít možnost si pomocí programovacího jazyka R a MS Excel programovat vlastní modely jednotlivých komponent s-o procesu a ověřovat je na experimentálně měřených datech. Stejně tak budou mít možnost pracovat s již existujícími nástroji vyvinutými jak pro výpočet vybraných komponent s-o procesu, tak pro celkovou simulaci s-o procesu. Přednáška je určena primárně studentům magisterského studia. Studenti by již měli mít základní znalosti z hydrologie a uživatelskou znalost MS Excel a ArcGIS.
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (26.02.2024)
The main aim of this hands-on course is to introduce students to the principles and methods of hydrological modelling. Methods used for calculating components of the rainfall-runoff process will be explained and students will have the opportunity to construct simple models of the components of the water cycle (using R language and MS Excel). Models will be calibrated based on experimental data. We will also use existing models often applied in hydrological research.
This lecture is determined primarily for master students. Students should have a hydrology background (basics) and be familiar with MS Excel and ArcGIS.
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (26.02.2024)
Literatura -
Becker, A., Serban P. (1990): Hydrological models for water - resources system design and operation. Operational Hydrology Report No. 34, WMO, Geneva.
Beven K. J. (2001): Rainfall-Runoff modelling, The Primer. John Wiley & Sons Chichester.
Beven K.J. (2009): Environmental Modelling: An Uncertain Future? Taylor & Francis.
Bízek, V., Foltýn, I., Helová, S., Jeníček, M., Koblížková, E., Kodešová, R., Mertl, J., Nesměrák, I., Nondek, L., Ratinger, T. (2011): Aplikace modelů v oblasti životního prostředí. CENIA, Praha.
Maidment, D. R. (1993): Handbook of Hydrology. McGraw-Hill, New York
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (15.12.2019)
Becker, A., Serban P. (1990): Hydrological models for water - resources system design and operation. Operational Hydrology Report No. 34, WMO, Geneva.
Beven K. J. (2001): Rainfall-Runoff modelling, The Primer. John Wiley & Sons Chichester.
Beven K.J. (2009): Environmental Modelling: An Uncertain Future? Taylor & Francis.
Bízek, V., Foltýn, I., Helová, S., Jeníček, M., Koblížková, E., Kodešová, R., Mertl, J., Nesměrák, I., Nondek, L., Ratinger, T. (2011): Aplikace modelů v oblasti životního prostředí. CENIA, Praha.
Maidment, D. R. (1993): Handbook of Hydrology. McGraw-Hill, New York
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (15.12.2019)
Požadavky ke zkoušce -
Zápočet: účast na cvičeních, zpracování a prezentace miniprojektu na zadané téma
Zkouška: ústní, formou diskuze nad různými tématy týkající se modelování. Podmínkou vykonání zkoušky je splněný zápočet.
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (23.09.2024)
Course credit: attendance on practical parts of the lecture, elaboration of the computer-based project on a given topic
Exam: oral examination (discussion on elaborated computer-based projects). The course credit (accepted homework projects) are required before the examination.
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (23.09.2024)
Sylabus -
All information (data, presentations, announcements, chat) will be available in Google Classroom e-learning room (contact Michal Jenicek for invitation)
2.10.2024: Introduction Hydrological model and its structure, model classification, model calibration and validation. (M. Jeníček)
9.10.2024: HBV-light I Modelling the impact of climate changes on catchment runoff. Data preparation, and model setup. (M. Jeníček)
16.10.2024: HBV-light II Modelling the impact of climate changes on catchment runoff. Model calibration using genetic algorithm procedure, model validation (M. Jeníček)
23.10.2024: HBV-light III Modelling the impact of climate changes on catchment runoff. Climate change scenarios, impact simulation, results analysis (M. Jeníček)
30.10.2024: Cancelled
6.11.2024: Evapotranspiration modelling – Potential evapotranspiration Radiation balance, Evaporation measurements, Derivation of fundamental equations, Development of air temperature, radiation budget and combined approach models in Excel environment. Models calibration and validation using measured data. (V. Šípek)
13.11.2024: Evapotranspiration modelling – Actual evapotranspiration Photosynthesis, Transpiration measurements, Interception, Description of possible approaches of AET modelling. Creating evapotranspiration models based on the soil wetness and empirical coefficients. (V. Šípek)
20.11.2024: Modelling of the soil moisture content – conceptual models Soil moisture data collection and related runoff generation processes. Use of three conceptual models to simulate subsurface flow and soil moisture budget. (V. Šípek)
27.11.2024: Modelling of the soil moisture content – conceptual models Soil moisture data collection and related runoff generation processes. Use of three conceptual models to simulate subsurface flow and soil moisture budget. (V. Šípek)
4.12.2024: Modelling of the soil moisture content – physically based models Soil matric potential, Retention curve. Setting up a physically based model (HYDRUS-1D) for a flow movement in a porous media. Model calibration and validation using measured data. (V. Šípek)
11.12.2024: Modelling snow accumulation and snowmelt I Energy-based models and degree-day models of snow; theoretical introduction. Creating 1) Excel-based and 2) R-based models of snow accumulation and snowmelt based on a degree-day approach. Models calibration and validation using measured data. (M. Jeníček)
18.12.2024: Modelling snow accumulation and snowmelt II Energy-based models and degree-day models of snow; theoretical introduction. Creating 1) Excel-based and 2) R-based models of snow accumulation and snowmelt based on a degree-day approach. Models calibration and validation using measured data. (M. Jeníček)
8.1.2025: Students’ work presentations, discussion
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (23.09.2024)
All information (data, presentations, announcements, chat) will be available in Google Classroom e-learning room (contact Michal Jenicek for invitation)
2.10.2024: Introduction Hydrological model and its structure, model classification, model calibration and validation. (M. Jeníček)
9.10.2024: HBV-light I Modelling the impact of climate changes on catchment runoff. Data preparation, and model setup. (M. Jeníček)
16.10.2024: HBV-light II Modelling the impact of climate changes on catchment runoff. Model calibration using genetic algorithm procedure, model validation (M. Jeníček)
23.10.2024: HBV-light III Modelling the impact of climate changes on catchment runoff. Climate change scenarios, impact simulation, results analysis (M. Jeníček)
30.10.2024: Cancelled
6.11.2024: Evapotranspiration modelling – Potential evapotranspiration Radiation balance, Evaporation measurements, Derivation of fundamental equations, Development of air temperature, radiation budget and combined approach models in Excel environment. Models calibration and validation using measured data. (V. Šípek)
13.11.2024: Evapotranspiration modelling – Actual evapotranspiration Photosynthesis, Transpiration measurements, Interception, Description of possible approaches of AET modelling. Creating evapotranspiration models based on the soil wetness and empirical coefficients. (V. Šípek)
20.11.2024: Modelling of the soil moisture content – conceptual models Soil moisture data collection and related runoff generation processes. Use of three conceptual models to simulate subsurface flow and soil moisture budget. (V. Šípek)
27.11.2024: Modelling of the soil moisture content – conceptual models Soil moisture data collection and related runoff generation processes. Use of three conceptual models to simulate subsurface flow and soil moisture budget. (V. Šípek)
4.12.2024: Modelling of the soil moisture content – physically based models Soil matric potential, Retention curve. Setting up a physically based model (HYDRUS-1D) for a flow movement in a porous media. Model calibration and validation using measured data. (V. Šípek)
11.12.2024: Modelling snow accumulation and snowmelt I Energy-based models and degree-day models of snow; theoretical introduction. Creating 1) Excel-based and 2) R-based models of snow accumulation and snowmelt based on a degree-day approach. Models calibration and validation using measured data. (M. Jeníček)
18.12.2024: Modelling snow accumulation and snowmelt II Energy-based models and degree-day models of snow; theoretical introduction. Creating 1) Excel-based and 2) R-based models of snow accumulation and snowmelt based on a degree-day approach. Models calibration and validation using measured data. (M. Jeníček)
8.1.2025: Students’ work presentations, discussion
Poslední úprava: Jeníček Michal, doc. RNDr., Ph.D. (23.09.2024)