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a b s t r a c t

A method of landscape typology and a determination of diagnostic variables for delimiting landscape
types was developed for the Czech Republic, thus fulfilling the first step of the European Landscape Con-
vention. Eight datasets describing elevation, aspect, slope, soils, reconstructed natural vegetation, mean
annual temperature, mean annual precipitation and land cover were used. The method uses a modified
TWINSAPN classification, measuring cluster heterogeneity using JUICE software, and defines a statisti-
eywords:
andscape classification
andscape typology
WINSPAN
UICE

cally significant diagnostic variable for each landscape type by calculating a measure of fidelity. This
hierarchical approach combines statistical methods with GIS techniques, enabling instant visualisation
and a further analysis of the results obtained. It is universal when zooming in on the landscape, though
higher spatial resolution datasets are needed.

© 2010 Elsevier B.V. All rights reserved.

andscape diagnostic features
IS

. Introduction

European landscapes are conditioned by many environmental
actors including climate, geology, soils and landforms as well as by
enturies of human activity leading to the formation of an outstand-
ng diversity of man-made landscapes (Meeus, 1995). This diversity
s recognised by the European Landscape Convention as a basic
omponent of European natural and cultural heritage, contributing
o human well-being and the consolidation of the European identity
Council of Europe, 2000). The specific composition, structure and
cenery that are unique to every landscape are undergoing rapid
hange due to many forces including agricultural intensification,
and abandonment, sub/urbanisation, construction of transport and
ogistic infrastructure and afforestation. These forces represent
ncreasing pressure on landscapes. European landscapes are thus
ecoming more and more uniform and homogenous; some land-
cape types are disappearing completely (Wascher, 2004).

The homogenisation and unification also affect a number of
andscape functions. It has been argued that ongoing landscape
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

hanges threaten biodiversity (Tropek and Konvička, 2008) because
ubstantial proportions of European biological species are linked
ith traditional land uses such as grass cutting, grazing, coppicing,

tc. These land uses led to the development of specific biotopes,
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which are occupied by a considerable diversity of species. These
species are now under threat due to the decline of these biotopes
caused by the abandonment of land and traditional land uses and
agricultural intensification (Tropek and Konvička, 2008).

Meeus (1995) pointed out that most European landscapes are
by-products of human activities; thus, what makes them vulner-
able to change in management is also essential for a landscape’s
biodiversity conservation. The European Landscape Convention
mentions this challenge and engages its signatory states to identify
and describe their national landscapes and analyse their character,
functions, state and quality (Council of Europe, 2000). The identi-
fication, description and assessment of landscapes constitute the
preliminary phase of any landscape policy that might be created to
preserve this unique European heritage.

A classification of landscapes that takes into account the under-
lying differences in their physical and cultural environment into
either individual or typological units is one of the traditional tasks of
environmental and geographical disciplines and is a great challenge
of landscape research. Landscape classifications using different
approaches have been presented in several studies (e.g., Bunce et
al., 1975, 1996a,b; Lioubimtseva and Defourny, 1999; Meeus, 1995;
Mücher et al., 2003; Van Eetvelde and Antrop, 2009; Vogiatzakis et
al., 2006). These different classifications are difficult to compare
classification analysis of cultural landscapes: An example from the
010.08.003

because of the varying approaches and data sources that were used
as well as the primary purpose for which the classifications were
made. These reported classifications are, however, a good source
for inspiration regarding the type of methods to use and the type
of data selection to employ. All approaches reflect the relationships

dx.doi.org/10.1016/j.landurbplan.2010.08.003
dx.doi.org/10.1016/j.landurbplan.2010.08.003
http://www.sciencedirect.com/science/journal/01692046
http://www.elsevier.com/locate/landurbplan
mailto:tomas.chuman@email.cz
mailto:chumant@natur.cuni.cz
mailto:dusan@natur.cuni.cz
dx.doi.org/10.1016/j.landurbplan.2010.08.003


 ING

L

2 and U

a
t
d

(
t
m
o
s
m
G
f
a

T
l
t
a
e
C
2
T
a
b
s
t

b
t
a
c
w
a
s
i
p
p
t
i
a
a
i
e
c
e
b

p
C
t
T
c
d
c
i
a
i
l
i
t

2

a

ARTICLEModel

AND-1880; No. of Pages 10

T. Chuman, D. Romportl / Landscape

mong the physical (e.g., climate, relief, soils or geology) and cul-
ural (land use and human artefacts) features that can be used to
escribe relatively homogenous landscape units.

In general, a classification method can be either subjective
based on intuitive expert judgment) or objective-based on quan-
itative statistical methods. The main limitation of subjective

ethods is the difficulty of classification revision by another expert
r the incorporation of new data that is obtained later in the
tudy. Objective methods are therefore the main focus of current
ethodological approaches. The development of remote sensing,
IS software and increased computer power have offered new ways

or less subjective landscape classifications. In addition, the quality
nd availability of various thematic datasets have also increased.

Objective classifications include several different approaches.
hey are based either on a spatial overlay of selected thematic
ayers (Lioubimtseva and Defourny, 1999), segmentation of a “mul-
ispectral image” composed of several thematic layers (Mücher et
l., 2003; Romportl and Chuman, 2007) or cluster analyses using
ither agglomerative or divisive clustering (Bunce et al., 1996a,b;
herrill, 1994; Manzanares, 2007; McNab et al., 1999; Owen et al.,
006; Van Eetvelde and Antrop, 2009; Vogiatzakis et al., 2006).
hese objective classifications minimise the subjective aspects and
re not fully dependent on expert judgement; however, one should
e aware that the definitions of classification parameters and the
election of input datasets for objective classifications are subjec-
ive.

In the Czech Republic, several landscape classifications have
een used (Kolejka and Lipský, 1999; Löw et al., 2005), but due
o the absence of published work regarding the methodological
pproaches that were used, these classifications cannot be criti-
ally reviewed. None of these previous classifications are accepted
idely, and none are used consistently for landscape protection

nd planning. The development of widely accepted landscape clas-
ification schemes is a great challenge to landscape research and
s a necessary foundation for appropriate landscape protection,
lanning and management. Authorities who deal with landscape
rotection, planning and management are now facing the need
o regulate new driving forces (e.g., sub/urbanisation, agricultural
ntensification, and changes in land uses due to subsidies) that
re placing increasing pressure on the landscape. These forces
re common for all European states and are particularly strong
n post-communist countries like the Czech Republic that have
xperienced dramatic changes in society after the fall of their
ommunist regime. This societal transformation has resulted in
conomic transformation, and the new economic development has
een accompanied by changes in lifestyle.

With regard to the above-mentioned information, the pur-
ose of this study is to propose a landscape classification of the
zech Republic at the national level and to take the first step
oward fulfilment of the European Landscape Convention mandate.
he intention of this study is to propose a method of landscape
lassification that is based on broadly available variables, which
escribe physical and cultural features. Furthermore, the classifi-
ation scheme should be based on an objective method such that
ts use will always yield the same result on the same landscape,
nd should enable the classification of landscapes into typolog-
cal units. In addition, the classification scheme should provide
andscape protection and management authorities with necessary
nformation regarding national landscape types including informa-
ion about their extents, distributions and characteristics.
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

. Materials and methods

The task consisted of three major stages: (1) selection of vari-
bles; (2) data pre-processing and preparation of the geodatabase;
 PRESS
rban Planning xxx (2010) xxx–xxx

and (3) cluster analyses, visualisation, evaluation and characterisa-
tion of the determined landscape types.

2.1. Selection of variables

Landscape types are complex systems, which integrate geol-
ogy, soil, vegetation, fauna, climate, relief and records of human
activities. These data are interrelated and linked in a functional
hierarchy that influences landscape character. A hierarchy show-
ing the relative dependence of the major landscape components has
been summarised by Klijn and de Haes (1994) and by Mücher et al.
(2003). Regarding the functional hierarchy influencing landscape
character and landscape classifications that have been used in other
countries, the landscape variability in this study was described by
the following datasets summarised in Table 1:

◦ Climate was characterised by mean annual precipitation and
mean annual temperature derived from the Climate Atlas of
Czechia (Tolasz et al., 2007) at a scale of 1:1,000,000.

◦ Soil types were taken from a Soil map of the Czech Republic at a
scale of 1:500,000 published in the Landscape Atlas of the Czech
Republic (Hrnčiarová et al., 2009).

◦ Topography was described by elevation, slope and aspect, all
derived from a digital elevation model of the Czech Republic with
200-m resolution (Arc CR 500).

◦ A Map of reconstructed natural vegetation of the Czech Repub-
lic (Mikyška et al., 1968–1972) at a scale of 1:200,000, showing
the state of the vegetation before its deterioration or destruction
by man, was used to include the phytogeographical aspects of the
landscapes. This map takes into account all of the aforementioned
variables, thus can refine the information about the environmen-
tal conditions as the scale of the climate or soil type dataset is
rather coarse. There were 20 categories of reconstructed vege-
tation, as shown in Table 1. These categories were derived from
classification units of actually existing natural and semi-natural
plant communities, outlined during extensive field mapping in
the period from 1955 to 1960, even in altered places, thus the
term reconstructed is used and the result is corresponding to a
map of climaxes (Mikyška et al., 1968).

◦ The cultural features of the landscape were expressed using the
CORINE Land Cover database. The most up-to-date vector layer
was used at a scale of 1:100,000 with a minimum mapping unit of
25 ha reflecting the state of land cover in the year 2006 (CENIA).
Out of the 44 classes of the CORINE Land Cover nomenclature, in
the third level, there were present only 29 classes in the Czech
Republic, as shown in Table 1.

A number of datasets could express landscape features in more
detail; however, only a few datasets exist that have consistent geo-
graphical resolution that covers the whole country. In this study,
we intended to use commonly available national data, to enable
repeatability of this method in other countries.

2.2. Data pre-processing and preparation of the geodatabase
prior to cluster analysis

The Czech Republic was divided into 2 km × 2 km grid cells,
each associated with the environmental variables mentioned above
(Fig. 1). All variables, including those originally recorded as contin-
uous variables such as aspect, elevation and slope, were expressed
as the proportion of the area covered by a particular class in
classification analysis of cultural landscapes: An example from the
010.08.003

each square (as percentages). More specifically, this means that
continuous variables were converted into nominal variables by
reclassifying them into several classes (Table 1). This step was nec-
essary for the analysis, as all of the data needed to be in the same
format. Such conversion of continuous variables into nominal vari-

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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Table 1
Variables used for landscape classifications.

Acronym

Mean annual precipitation (mm)
Less than 450 Prec1
450–500 Prec2
500–550 Prec3
550–600 Prec4
600–650 Prec5
650–700 Prec6
700–800 Prec7
800–1000 Prec8
1000–1200 Prec9
More than 1200 Prec10

Mean annual temperature (◦C)
Less than 2 Temp1
2–3 Temp2
3–4 Temp3
4–5 Temp4
5–6 Temp5
6–7 Temp6
7–8 Temp7
8–9 Temp8
9–10 Temp9
More than 10 Temp10

Altitude (m a.s.l.)
<250 DEM 1
250–500 DEM 2
500–750 DEM 3
750–1000 DEM 4
1000–1250 DEM 5
Above 1250 DEM 6

Slope (◦)
0–2 SLP1
2–5 SLP2
5–10 SLP3
10–15 SLP4
>15 SLP5

Aspect (◦)
−1 Flat
315–0; 0–45 North
45–135 South
135–225 East
225–315 West

Soil type
Anthrosols SOIL1
Phaeozems SOIL2
Chernozems SOIL3
Fluvisols SOIL4
Gleysols SOIL5
Haplic Luvisols SOIL6
Cambisols SOIL7
Entic Podzols SOIL8
Albeluvisols SOIL9
Histosols SOIL10
Pellosols SOIL11
Stagnosols SOIL12
Calcic Leptosols SOIL13
Haplic Podzols SOIL14
Rendzic Leptosols SOIL15
Greyic Phaeozems SOIL16
Pellic Vertisols SOIL17

Land use/cover
Continuous urban fabric CLC 111
Discontinuous urban fabric CLC 112
Industrial or commercial units CLC 121
Road and rail networks and associated land CLC 122
Port areas CLC 123
Airports CLC 124
Mineral extraction sites CLC 131
Dump sites CLC 132
Construction sites CLC 133
Green urban areas CLC 141
Sport and leisure facilities CLC 142
Non-irrigated arable land CLC 211
Vineyards CLC 221
Fruit trees and berry plantations CLC 222
Pastures CLC 231
Complex cultivation patterns CLC 242

Table 1 (Continued )

Acronym

Land principally occupied by agriculture, with significant areas
of natural vegetation

CLC 243

Broad-leaved forest CLC 311
Coniferous forest CLC 312
Mixed forest CLC 313
Natural grassland CLC 321
Moors and heathland CLC 322
Transitional woodland-scrub CLC 324
Bare rocks CLC 332
Sparsely vegetated areas CLC 333
Inland marshes CLC 411
Peat bogs CLC 412
Water courses CLC 511
Water bodies CLC 512

Reconstructed natural vegetation
Acidophilous pine forest VEG 1
Acidophilous oak forest VEG 2
Mountain acidophilous beech forest VEG 3
Birch-oak forest with Molinia arundinacea VEG 4
Acidophilous beech and silver fir forest VEG 5
Pine-oak forest VEG 6
Oak-hornbeam forest VEG 7
Climax mountain spruce forest VEG 8
Herb-rich beech forest VEG 9
Alluvial forest VEG 10
Waterlogged pedunculate oak-beech forest VEG 11
Waterlogged spruce forest VEG 12
Fens VEG 13
Subalpine and alpine vegetation VEG 14
Sub-xerophilous oak forest VEG 15
Ravine forest VEG 16
Perialpidic basiphilous termophilous oak forest and

rocky-outcrop forest steppe
VEG 17
Calcicolous beech forest VEG 18
Wetland vegetation VEG 19
Raised bogs VEG 20

ables does not significantly influence the results (Jones and Bunce,
1985). All spatial analysis and construction of the geodatabase were
performed using ArcGIS (ESRI, 2008).

2.3. Cluster analyses, visualisation, evaluation and
characterisation of the determined landscape types

To identify contemporary landscape types at the national level,
we decided to execute hierarchical divisive cluster analyses using
a modified TWINSPAN (two way indicator species analysis) algo-
rithm (Roleček et al., 2009) incorporated in the JUICE 7.0 software
package (Tichý, 2002). This method uses the standard TWINSPAN
algorithm proposed by Hill (1979) but calculates the heterogene-
ity of each cluster prior to each division. The classification starts
by dividing the dataset into two clusters based on correspondence
analysis ordination. The samples are divided into the left (nega-
tive) side and the right (positive) side of the dichotomy according
to their score on the first CA axis (Lepš and Šmilauer, 1999). Then
the division is stopped, and a preselected measure of heterogene-
ity is calculated for both clusters. In the next step, only the more
heterogeneous cluster is divided by TWINSPAN algorithm into two
smaller clusters. Then the preselected measure of heterogeneity is
calculated again and only the most heterogeneous cluster is divided
by TWINSPAN. The whole procedure is rather complex (see Hill and
Šmilauer, 2005; Roleček et al., 2009), but the explanation is beyond
of the scope of this study. These steps are repeated until the final
number of clusters, hierarchical levels or the low satisfying level of
classification analysis of cultural landscapes: An example from the
010.08.003

heterogeneity is reached.
The advantage of TWINSPAN classification is that each division

is accompanied by a set of indicators (in this case environmental
variables), which discriminate between the two sub-groups aris-
ing from the dichotomy. The indicators are variables preferring

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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used the phi coefficient of the variable presence/absence, which is
independent of the total number of objects in the defined cluster
(Chytrý et al., 2002). The value of the phi coefficients ranges from
−1 to 1. According to Chytrý et al. (2002), the highest phi value of
ig. 1. An example of an input grid square with associated environmental variables
articular grid square as a percentage.

ne or the other side of the dichotomy. The basis of the indi-
ators in TWINSPAN is basically qualitative (Lepš and Šmilauer,
999). Consequently, TWINSPAN only works with qualitative data.
herefore, in order not to lose information on the quantity of
he variables, which entered the analysis, Hill (1979) introduced
seudo-variables and pseudo-variable cut levels. This means that
ach variable can be present as several pseudo-variables, accord-
ng to its quantity in the object. The pseudo-variables are present if
heir quantities exceed their corresponding cut levels for a par-
icular object. In this way, quantitative data are translated by
he TWINSPAN into qualitative (presence/absence) data (Lepš and

ˇmilauer, 1999).
All nominal variables entering the analysis were expressed as

roportions of the area covered by a particular class in each square
as percentages). Cut levels were set at 0, 5, 26, 51 and 76. Given the
nformation defined above, this setting can be expressed in terms
f pseudo-variables by saying that grid squares with 16 and 30%
orest cover, as examples, contain the following pseudo-variables:
oth contain pseudo-variables Forest1 (forest cover is exceeding
ut level 0) and Forest2 (forest cover is exceeding cut level 5) but
he square with 30% forest cover contains an additional pseudo-
ariable Forest3 (forest cover is exceeding also cut level 26).The grid
quares are registered as having two pseudo-variables in common,
nd one different. The minimum number of objects per division was
et to five. The total inertia (the sum of the eigenvalues of the cor-
espondence analysis) was used as a measure of heterogeneity that
etermined which cluster would be divided into two smaller clus-
ers in the next hierarchical level. The further division was stopped
hen the total inertia of a cluster was lower than 0.15.

The result was then projected to the input square grid, as each
bject of the TWINSPAN classifications was accompanied by a code
dentifying to which cluster it belonged. The obvious advantage of
WINSPAN is the potential to combine the result with GIS software
nd visualise it. It is also possible to execute further spatial analysis
n defined clusters. All spatial calculations were carried out using
rcGIS 9.2 software (ESRI, 2008).

An important part of each landscape classification should be the
etermination of diagnostic variables for each landscape type. In
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

egetation science, the determination of diagnostic species of plant
ommunities is based on fidelity (Chytrý et al., 2002). The fidelity
easures species concentration in a particular unit (cluster) rel-

tive to other units (Tichý and Chytrý, 2006). The distribution of
hese occurrences within the dataset is compared to what would
es next to the variables express the proportion of the area each variable covers in a

theoretically be expected if such occurrences were independent of
the cluster. Species occurring mostly in a particular cluster that are
rare or absent in others have high positive fidelity values. Species
occurring mostly outside a particular cluster have a negative fidelity
value. The higher the value for a species, the more likely the species
only exists in the specific cluster. This concept could be applied also
to environmental variables that characterise the landscape types.
Given this fact, we used the fidelity measure to recognise the diag-
nostic variables. Analogously environmental variables occurring
mostly in a particular cluster that are rare or absent in others have
high positive fidelity values. Variables occurring mostly outside a
particular cluster have a negative fidelity value. Measures of fidelity
are available from the JUICE software package (Tichý, 2002). We
classification analysis of cultural landscapes: An example from the
010.08.003

Fig. 2. DCA ordination diagram showing correlations of input variables. For mean-
ings of acronyms see the input datasets descriptions (Table 1).

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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Fig. 3. Dendrogram showing hierarchical levels of the modifi

ne is achieved if the variable occurs in all objects of the partic-
lar cluster and is absent in all other clusters. A value of zero is
btained when the relative frequency of the variable in the cluster
quals the relative frequency in other clusters. The relationships
mong the variables were further investigated by detrended cor-
espondence analysis (DCA), which is perhaps the most common
echnique of indirect ordination. The DCA was performed and the
rdination diagram visualised using CANOCO 4.5 (ter Braak and

ˇmilauer, 2002).

. Results

A total of 102 attributes (response variables) in 20,339 squares
ere processed via TWINSPAN cluster analysis. Some variables

how a high correlation, as is illustrated by the indirect gradient
nalysis (DCA) (Fig. 2). The highest elevations strongly correlate
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

ith steep slopes, high precipitation, low temperature and nat-
ral vegetation consisting of climax mountain spruce forest and
ubalpine and alpine vegetation. The lowest altitudes strongly
orrelate with high temperature, low precipitation and natural veg-
tation consisting of sub-xerophilous oak forest or xerothermic oak
INSPAN classification with indicative variables at each level.

forest and rocky-outcrop forest steppe vegetation, which was often
converted to vineyards (Fig. 2).

The hierarchical classification was stopped at the 10th level.
The TWINSPAN classification of the Czech landscape yielded 11
divisions (national landscape types) at 10 levels, shown as a den-
drogram with indicators used for division at each level (Fig. 3).
The division of the 20,339 squares into 11 landscape types pro-
duced 17 objects in the smallest group and 6071 objects in the
largest group. The smallest landscape type covered 41 km2 within
the Czech Republic and the largest covered 23,911 km2. The average
landscape type consisted of 1848 objects and covered 7891 km2.

The resulting 11 national landscape types showed well-defined
patterns of distribution that related to recognisable combinations
of landscape features. The smallest type occurred in the highest
parts of the Czech mountains, the coldest and wettest areas, which
are covered by alpine and subalpine vegetation. The most extensive
classification analysis of cultural landscapes: An example from the
010.08.003

landscape type covered the intermediate altitudes that had high
levels of agricultural land use.

At the first hierarchical level, the territory of the Czech Republic
was divided primarily into two landscape types: (i) warm flat to
gently sloping, dry lowlands and downs dominated by agriculture,

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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Table 2
Counts of indicators used for divisions at each hierarchical level summarised per each thematic layer entering the cluster analysis.

Indicator used qty. Hierarchical level

1 2 3 4 5 6 7 8 9 10 sum

Elevation 2 2 2 2 3 2 2 1 2 18
Mean annual temperature 2 3 3 2 2 2 1 2 17
Reconstructed natural vegetation 2 1 2 3 4 1 2 1 1 17
Slope 1 1 4 3 9
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Soil 1 1 2 1
Land cover 2 1 1
Mean annual precipitation

hich extend over 31,957 km2 and (ii) colder to cold, humid hilly
ands, highlands and mountains dominated by forests and pastures,

hich also include subalpine and alpine vegetation and extend
ver 46,956 km2. This larger cluster showed higher heterogeneity
nd thus was divided more often than the smaller one at the next
ierarchical levels, producing 7 out of the 11 final clusters.

From the indicators, it is clear that the primary landscape
tructures of elevation and the strongly correlated mean annual
emperature play a dominant role in the landscape classification.
he mean annual precipitation was the least common indicator used
nly 5 times. Aspect was not, however, used a single time. The ele-
ation was the most common indicator, used 18 times, followed
y mean annual temperature and reconstructed natural vegetation
hat were used 17 times, as shown in Table 2. Slope and soil vari-
bles were used 9 times. The land cover was not a frequently used
ndicator, being utilised only 6 times.

The statistical evaluation of the diagnostic variables for each
andscape type was performed using the phi coefficient as a mea-
ure of fidelity (Chytrý et al., 2002) and calculated using JUICE
oftware (Tichý, 2002). Fisher’s exact test was calculated simul-
aneously to exclude variables with non-significant fidelity (at the
9% significance level) as proposed by Tichý (2002). The analysis
ielded 101 variables with positive fidelity, which characterised
he 11 landscape types, as summarised in Table 3. There was only
ne variable, VEG 18 (Calcicolous beech forest), without signifi-
ant positive fidelity in any landscape type. Most of the variables
howed positive fidelity to more than one landscape type; how-
ver, every landscape type could be characterised with a specific
nd meaningful combination of variables, as shown in Table 3.

The distinctiveness of the delimited landscape types could be
ssessed with the average positive fidelity value. Higher average
delity showed more distinctive landscape types. From this point of
iew, the landscape type no. 1 showed the highest average fidelity
alue, which indicates its distinctive character that can be con-
rasted to the low average fidelity of landscape type no. 8.

The landscape types delimited in Fig. 4 can be described as fol-
ows:

Type 1: Extremely cold to very cold mountains or alpine mountains
close to or above the tree line that receive more than 1200 mm of
precipitation per year on average. Haplic podzol is the most char-
acteristic soil type. Natural vegetation consists mainly of subalpine
and alpine vegetation. Natural grasslands, moors and heath land
are the predominant land covers. This landscape type only occurs
in the highest parts of the Giant Mountains and is the rarest type
in the Czech Republic.
Type 2: Very cold to cold, flat mountaintops that receive more
than 1200 mm of precipitation per year on average. Gleysols and
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

histosols are the dominant soil types. Natural vegetation consists
of waterlogged spruce forest and climax mountain spruce forest.
Transitional woodland-scrub and peat bogs are the dominant land
covers. This second rarest landscape type was found mainly in the
highest flat parts of the Bohemian Forest.
2 1 1 9
1 1 6
1 1 3 5

Type 3: Very cold to cold steeply sloping mountains that receive
between 1000 and 1200 mm of precipitation per year on aver-
age. Haplic podzol is the most characteristic soil type. Natural
vegetation consists mainly of climax mountain spruce forest, sub-
alpine and alpine vegetation and mountain acidophilous beech
forest. Transitional woodland-scrub, moors and heathland are the
dominant land covers. Such conditions were identified in the
Giant Mountains, the Jeseníky Mountains and in few sites of the
Bohemian Forest. The total area of 122 km2 makes this landscape
type the last of the rare ones, as all following types cover more
than 1000 km2.
Type 4: Cold to moderate cold uplands to mountains that receive
more than 800 mm of precipitation per year on average. Entic
podzol or haplic podzol are the most characteristic soil type. Nat-
ural vegetation consists mainly of mountain acidophilous beech
forest or waterlogged spruce forest. Transitional woodland-scrub
and coniferous forest are the dominant land covers. This land-
scape type was found in most of the Czech mountains higher than
1000 m a.s.l., with a high occurrence in the Bohemian Forest, the
Jeseníky Mountains and the Jizerské hory Mountains. This type
represents the typical mountain landscape that covers more than
1100 km2.
Type 5: Moderate cold to moderate warm uplands and hills that
receive up to 1000 mm of precipitation per year on average. Entic
podzol is the most characteristic soil type. Natural vegetation
consists mainly of herb-rich beech forest. Coniferous forest and
pastures are the predominant land covers. Landscape type no. 5
covers the majority of foothills of the mountain ranges mentioned
above and the upper parts of the highlands. This type represents
the typical Czech upland landscape that covers almost 6300 km2.
Type 6: Moderate warm hilly lands up to 750 m a.s.l. that receive up
to 800 mm of precipitation per year on average. Cambisols are the
most characteristic soil types. Natural vegetation consists mainly
of acidophilous beech and silver fir forest or herb-rich beech for-
est. The land is occupied principally by agriculture, with significant
areas of natural vegetation. These conditions were classified in
extensive parts of the Czech-Moravian Highland as well as in the
Lower Jeseník Highland. Similar landscape features were recorded
in the foothills of other uplands within all of the Czech Republic.
The total area of nearly 15,300 km2 makes this landscape type the
third most common in the country.
Type 7: Moderate warm downs and hilly lands extending between
250 and 750 m a.s.l. that receive up to 800 mm of precipitation per
year on average. Cambisols and stagnosols are the most character-
istic soil types. Natural vegetation consists mainly of acidophilous
oak forest or acidophilous beech and silver fir forest. Land cover
is dominated by arable land or a mosaic of agriculture plots with
significant areas of natural vegetation. This type covers almost one
classification analysis of cultural landscapes: An example from the
010.08.003

third of the country’s area and is the most common type recorded
in the majority of downs and hilly lands of the Czech Republic. This
type represents the typical Czech landscape.
Type 8: Moderate warm to warm downs predominantly up to
500 m a.s.l. that receive up to 650 mm of precipitation per year

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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Table 3
An overview of variables based on fidelity measures. Highlighted values are those with the highest phi coefficient for each variable. Dashes in the table indicate negative
fidelity.

Landscape type 1 2 3 4 5 6 7 8 9 10 11
Extent km2 41.3 50.7 122.1 1151.1 6286.3 15,394.1 23,911.2 18,479.3 6330.2 4679.1 2469.2
No. of variables with positive fidelity 16 16 23 25 24 18 28 32 32 36 25
Average fidelity value 41.7 38.3 31.5 23.9 21.3 22.2 17.8 15.2 18.6 21.3 25.3

Variable Phi coefficient × 100

CLC 111 – – – – – – – – – 5.4 –
CLC 112 – – – – – – – 22 29.3 21.9 15.3
CLC 121 – – – – – – – 4.5 16.3 13.9 12.4
CLC 122 – – – – – – – – 7.5 13.4 –
CLC 123 – – – – – – – – – – 5.4
CLC 124 – – – – – – – – 8.8 5.4 –
CLC 131 – – – – – – – – – 11.8 –
CLC 132 – – – – – – – – 6.3 8.8 4.5
CLC 133 – – – – – – – – 8.4 – –
CLC 141 – – – – – – – – 5 12.9 –
CLC 142 – – – – – – – 4 – 5.1 –
CLC 211 – – – – – – 23.1 29.9 30.4 28.5 27.5
CLC 221 – – – – – – – – – 24.5 24
CLC 222 – – – – – – – 3.1 – 23.2 12.4
CLC 231 – – – – 21.2 33.9 24 – – – –
CLC 242 – – – – – – – 3.6 4.5 26.5 18.8
CLC 243 – – – – – 22.9 22.7 – – – –
CLC 311 – – – – – – – 6.6 10.8 9.6 21.1
CLC 312 – – 24.8 24 21.6 20.1 17.4 – – – –
CLC 313 – – – – 18.3 – 14.8 16.8 – – –
CLC 321 69 – 24.1 – – – – – – – –
CLC 322 66.4 – 26.5 – – – – – – – –
CLC 324 21.5 33.1 36.5 24.9 – – – – – – –
CLC 332 28.5 – – – – – – – – – –
CLC 333 28.7 – – – – – – – – – –
CLC 411 – – – 12.2 0.5 – – – – – 1.7
CLC 412 – 20.4 – 9.9 – – – – – – –
CLC 511 – – – – – – – – 2.2 6.9 20.2
CLC 512 – – – – – – 4.6 4.9 8.2 – 9.6
DEM 1 – – – – – – – – 48.7 40.2 50.9
DEM 2 – – – – – – 42.2 44.4 – 30.4 –
DEM 3 – – – – 45.1 56.5 23.7 – – – –
DEM 4 – – 33.3 45.7 44.2 – – – – – –
DEM 5 25.2 45 45 33.2 – – – – – – –
DEM 6 54.1 35 52 – – – – – – – –
East – – – – – 4.9 3.4 3.1 – – –
Flat – – – – – – – 10.6 21.7 11.4 23.2
North – – – – – – 6.4 – – – –
South – – – – – 3.1 3.7 – – – –
West – – – – – 4.7 4.8 – – – –
Prec1 – – – – – – – – – 24.2 –
Prec2 – – – – – – – – – 36.4 47.4
Prec3 – – – – – – – 7.8 – 42.1 35.4
Prec4 – – – – – – 13.5 20.3 47.7 – –
Prec5 – – – – – 16.6 20.3 20.3 16.9 – –
Prec6 – – – – – 28.9 17 – – – –
Prec7 – – – – 19.2 30.4 15.6 – – – –
Prec8 – – – 14.8 44.8 7.2 – – – – –
Prec9 – – 39.4 35.8 9.6 – – – – – –
Prec10 41.7 54.6 10.8 12.3 – – – – – – –
SLP1 – – – – – 8.7 8.9 9.6 9.8 9.8 9.8
SLP2 – – – 12.4 12.6 11.2 8.7 – – – –
SLP3 – 21.7 21.7 18.5 18.8 6.2 4.7 – – – –
SLP4 23.4 17.9 32.8 19.5 18.2 – – – – – –
SLP5 25.6 – 49.7 15.2 7.4 – – – – – –
SOIL1 – – – – – – – – – 19.2 –
SOIL2 – – – – – – – – 17.8 5.1 28.4
SOIL3 – – – – – – – – 19.2 51.8 47.1
SOIL4 – – – – – – – 0.2 30.3 2 40.1
SOIL5 – 52 – 1.7 0.9 – – – – – –
SOIL6 – – – – – – – 34 22.6 13.4 –
SOIL7 – – – – – 36.2 33.8 – – – –
SOIL8 – – 21.9 46.6 34.7 – – – – – –
SOIL9 – – – – – – – 38 14.5 – –
SOIL10 – 43.2 – 28.9 0.9 – – – – – –
SOIL11 – – – – – – – 7.4 28.8 – –
SOIL12 – – – – – 19 22.8 18.1 – – –
SOIL13 – – – – – – – 5.5 11.8 20.9 –
SOIL14 40.6 40.6 40.6 30.9 – – – – – – –
SOIL15 – – – – – – – 8.3 – – –

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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Table 3 (Continued)

Landscape type 1 2 3 4 5 6 7 8 9 10 11
Extent km2 41.3 50.7 122.1 1151.1 6286.3 15,394.1 23,911.2 18,479.3 6330.2 4679.1 2469.2
No. of variables with positive fidelity 16 16 23 25 24 18 28 32 32 36 25
Average fidelity value 41.7 38.3 31.5 23.9 21.3 22.2 17.8 15.2 18.6 21.3 25.3

Variable Phi coefficient × 100

SOIL16 – – – – – – – 6.9 12.7 – –
SOIL17 – – – – – – – – – 18.4 –
Temp1 67.5 – 14.5 – – – – – – – –
Temp2 50.7 39.6 46.6 – – – – – – – –
Temp3 21.2 42.6 46 27.9 – – – – – – –
Temp4 – – 22.5 60 14.1 – – – – – –
Temp5 – – – 10.5 76 1.7 – – – – –
Temp6 – – – – 27.4 73.3 – – – – –
Temp7 – – – – – – 66.8 34.7 – – –
Temp8 – – – – – – – 30.6 50.9 45.1 –
Temp9 – – – – – – – – – 21.3 79.1
Temp10 – – – – – – – – – 5 –
VEG 1 – – – – – – 8.1 – – – –
VEG 2 – – – – – – 37.6 30.8 – – –
VEG 3 – 21.3 28.8 42.9 10.1 – – – – – –
VEG 4 – – – – – – – 6.5 6.6 – –
VEG 5 – – – – – 51.5 20.9 – – – –
VEG 6 – – – – – – 7.6 – 19 – –
VEG 7 – – – – – – – 29.7 29.4 40.8 28.8
VEG 8 25.3 50 50 13.1 – – – – – – –
VEG 9 – – 23 16 37.7 24.2 8 – – – –
VEG 10 – – – – – – 14 17.1 27.5 17.7 25.5
VEG 11 – – – – – – – 5.8 19.2 – –
VEG 12 – 51.3 – 28 7.3 – – – – – –
VEG 13 – – – – – – – – 3.8 – –
VEG 14 77.1 – 33.3 – – – – – – – –
VEG 15 – – – – – – – 2 – 54.7 37.8
VEG 16 – – – – 10.6 4 – – – – –

–
9
–

VEG 17 – – – –
VEG 19 – – – –
VEG 20 – 45.1 1.6 12.7

on average. Albeluvisols, haplic luvisols and stagnosols are the
most characteristic soil types. Natural vegetation consists mainly
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

of acidophilous oak forest or oak-hornbeam forest. Arable land
and discontinuous urban fabric are characteristic land covers for
this landscape type. This landscape type is widespread in downs
and basins in the whole Czech Republic. Its total area of almost
18,500 km2 makes this type the second largest one in the country.

Fig. 4. The 11 delimited landscape
– – – – 37.7 6.8
– – – – – –
– – – – – –

Type 9: Warm lowlands that receive up to 650 mm of precipitation
per year on average. Fluvisols, haplic luvisols and pellosols are the
classification analysis of cultural landscapes: An example from the
010.08.003

most characteristic soil types. Natural vegetation consists mainly
of oak-hornbeam forest, alluvial forest or waterlogged peduncu-
late oak-beech forest. A high proportion of this land has been
converted to urban fabric. Arable land, discontinuous urban fabric
and industrial or commercial units are characteristic land covers

types of the Czech Republic.

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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for this landscape type. Such conditions were classified in the east-
ern part of the Elbe valley downs, in Upper Moravian Basin and
along the Odra river in the northeastern part of the Czech Repub-
lic. Isolated occurrences were recorded in other warm lowlands in
the western and southern parts of the country.
Type 10: Warm to very warm gently sloping lowlands and downs
up to 500 m a.s.l. that receive up to 550 mm of precipitation per
year on average. Chernozems are the most characteristic soil
types in this landscape. Natural vegetation consists mainly of
sub-xerophilous oak forest, oak-hornbeam forest and perialpidic
basiphilous termophilous oak forest and rocky-outcrop forest
steppe. The land cover is highly variable. Arable land, urban areas,
complex cultivation patterns, fruit trees, berry plantations and
vineyards are characteristic land covers. This landscape type was
found in the warm and dry gently sloping lowlands in the western
and southeastern part of the Czech Republic.
Type 11: Very warm flat lowlands up to 250 m a.s.l., receiving
450–550 mm of precipitation per year on average. Chernozems,
fluvisols and phaeozems are the most characteristic soil types. Nat-
ural vegetation consists mainly of sub-xerophilous oak forest and
oak-hornbeam forest.

The land cover is highly variable. Arable land, broad-leaved for-
st and water courses are characteristic land covers. This landscape
ype was recorded in the driest and warmest regions of the Czech
epublic. Specifically, this landscape type was found in the low-

ands along the river Dyje in southeastern Moravia and the lowlands
long the confluence of the rivers Vltava and Labe in the central part
f Bohemia.

. Discussion

The 11 national landscape types obtained by TWINSPAN divi-
ive cluster analysis show a well-defined pattern of distribution
hat relates to recognisable combinations of landscape features.
WINSPAN is one of the most popular software packages for hier-
rchical divisive classification techniques. Though the technique
as designed originally for vegetation classification, it has been

hown to yield valid results when used for environmental strati-
cation or landscape classification (Bunce et al., 1996a,b; Cherrill,
994; Manzanares et al., 2007; McNab et al., 1999). The application
f modified TWINSPAN algorithm (Roleček et al., 2009) demon-
trated here increased the flexibility of the classification, enabling
ne to provide any number of clusters and avoiding the division
f homogenous clusters. The number of clusters does not increase
wice at every hierarchical level as was the case when using the
riginal TWINSPAN algorithm.

The distinct advantage of this method is the hierarchical sys-
em that is able to describe the national and regional levels, and a
et of indicators that reveals what defines the levels (unlike other
lustering techniques). As the TWINSPAN classification was orig-
nally designed to identify associated species, the indicators are
ften highly correlated input variables (Bunce et al., 1996a,b).

The only constraint of the TWINSPAN classification is the limita-
ion of its being only able to handle a maximum of 25,000 objects,
hich did not allow us to use a cell size of smaller than 2 km × 2 km

regarding the extent of the Czech Republic). Larger cells cause the
andscape units to look coarse. This could be overcome by per-
orming the analysis on a stratified selection of squares, as has
een performed for environmental stratification in England (Bunce
Please cite this article in press as: Chuman, T., Romportl, D., Multivariate
Czech Republic. Landscape Urban Plan. (2010), doi:10.1016/j.landurbplan.2

t al., 1996a,b). This stratification can be followed by classifying
he remaining subset of squares into landscape types based on
he indicative variables. Bunce et al. (1996a,b) mentioned that it
s important to have a reasonably high number of objects on which
o base the subset classification in order to minimise the influence
 PRESS
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of unusual objects. Due to high variability of the environmental
conditions in the Czech Republic, we decided to analyse the whole
dataset and not to bias the classification by the rare combination of
variables. We are aware of the coarse resolution of our results. Addi-
tionally, when we considered the spatial scale of the input datasets
and the classification levels involving the entire Czech Republic, the
final outputs represented reasonable and precise landscape types.

It can be argued that using a grid cell and cluster analysis results
in isolated cells that belong to one landscape type surrounded by
another type. This was the case in our classification mainly when
isolated hills or patches of different soil types, reconstructed nat-
ural vegetation categories or land cover classes occurred. Local
differences in physical features such as trophic parameters or mois-
ture regimes might lead to the development of different vegetation
assemblages forming a unique landscape type within a broader
surrounding. Isolated units of 4 km2 sizes could represent char-
acteristic landscape types, and, therefore, no generalisations were
applied.

Another controversial step of the presented method is our defi-
nition of cut levels. The use of different threshold values could have
yielded different results. We assume that for landscape classifica-
tion the cut levels used (presence – up to 5%, less then quarter,
less then half, less then three quarters and above three quarters for
each variable) are sufficient. However, the definition of threshold
values, the number of clusters and the dissimilarity measures are
the main limitations of every method used for classification (Bunce
et al., 1996a,b).

The use of fidelity as computed by JUICE (Tichý, 2002) to find
statistically significant diagnostic species for the final clusters was
found to be highly rewarding. The phi coefficient was used as a mea-
sure of fidelity simultaneously with Fisher’s exact test to exclude
variables with non-significant fidelity, as it does not depend on
cluster size (Tichý and Chytrý, 2006).

Most of the variables (e.g., land cover, mean annual temper-
ature and elevation) showed positive fidelity in more than one
landscape type; however, every landscape type could be charac-
terised with specific combination of variables. The results show
a foundational role of the primary landscape structure in land-
scape classification. This supports Meeus’s (1995) Pan-European
landscape classification showing that variables such as climate,
parent geological substrate and altitude are key factors in human
exploitation of the environment and consequently determine cul-
tural landscape conditions.

The main limitation of every method used for landscape clas-
sification, even those that are objective, is input data selection
(Bunce et al., 1996a,b) and data availability. Therefore, approaches
to landscape classification are often highly contentious because
landscape types depend on a whole range of factors, many of which
are difficult to specify objectively. In this study, broadly available
national datasets that are used commonly in landscape classifi-
cations (Bunce et al., 1996a,b; Lioubimtseva and Defourny, 1999;
Manzanares et al., 2007) were used.

Climatic variables and soil types were of lower spatial resolu-
tion than those derived from the digital elevation model (elevation,
aspect and slope), but there are no such data covering whole coun-
try in high detail. The reconstructed natural vegetation at a scale
of 1:200,000, however, refines the information about the environ-
mental conditions by showing the state of vegetation before its
deterioration or destruction by man. The corresponding map of cli-
maxes (Mikyška et al., 1968) is thus a function of climate, geology
and relief. The cultural landscape conditions were represented only
classification analysis of cultural landscapes: An example from the
010.08.003

by CORINE Land Cover, which is the only dataset expressing the
impact of society.

More variables might have been included such as landscape
structure (Van Eetvelde and Antrop, 2009), visual criteria (Meeus,
1995) or cultural, historical, archaeological or aesthetic features.

dx.doi.org/10.1016/j.landurbplan.2010.08.003
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nformation about such landscape characteristics are rarely avail-
ble in the form of a spatial database and are based, to a large
xtent, on subjective judgement. The use of this data is more
ppropriate at local levels that are beyond of the scope of this
tudy.

The most problematic aspect of any landscape classification
nvolves testing the validity of the result because there is no agreed
et of standards against which the results can be compared (Haines-
oung, 1992). The DCA ordination and fidelity measures show that
very landscape type can be characterised with specific and mean-
ngful combinations of variables. According to Bunce et al. (1996a,b)
r Jongman et al. (2006), cluster analysis results in a meaning-
ul classification of landscape types. The originality of this method
rises from the hierarchical system that takes into account cluster
eterogeneity and produces indicators for each division as well as
delity measures, which show characteristic sets of variables for
ach landscape type.

. Conclusions

The method of landscape typology presented here using divisive
luster analysis performed by a modified TWINSPAN classification
n combination with GIS and JUICE software yielded satisfactory
esults. The method fits the most commonly used methods in other
uropean countries. The main advantages of this method lie in the
ierarchy of landscape types, the determination of statistically sig-
ificant variables that are characteristic to each landscape type and
he interconnection between the TWINSPAN classification and the
IS software that helps to visualise and further analyse results. The
isualisation of landscape types is a necessary tool for landscape
lanning and management, as well as being important for assess-
ents of landscape changes. This method could also be applied by

ther countries as it is very flexible in the number and spatial res-
lution of input datasets, the number of hierarchical levels and the
umber of final landscape types.
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Lepš, J., Šmilauer, P., 1999. Multivariate Analysis of Ecological Data. Faculty of Bio-
logical Sciences, University of South Bohemia, České Budějovice.
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