Climatic change: Past, current, future

Radan HUTH

huthr@natur.cuni.cz

What is it about...

*****greenhouse effect *how is climate changing? observed climate change *how will climate change? and how can we know it? *why is climate changing? *and (if we have time) what can we do with it?

Greenhouse effect

*****substance:

- atmosphere is well permeable to incoming short-wave solar radiation
- atmosphere is almost impermeable to long-wave radiation of Earth surface

Radiatively active (greenhouse) gases

* water vapour (H₂O)
* carbon dioxide (CO₂)
* methane (NH₄)
* nitrous monoxide (N₂O)
* freons (chlorofluorocarbons)
* ozone (O₃)

Major GHGs

water vapour

concentrations not directly affected by human

activities

Major greenhouse gases

AND THE

CO_2 – carbon dioxide

6060 6060 6061

Major greenhouse gases

✓ N₂O – nitrous monoxide

Major greenhouse gases

freons (chloro- & fluoro-carbons): CCl₄, CFCl₃, ...

2. How is climate changing?

Global mean temperature

- average temperature of the entire surface of Earth
- cannot be measured immediately
- must be calculated from available measurements
- continents monthly means of air temperature (in 2 m) at stations (> 3000 stations at the end of 20th century)
- oceans: sea surface temperature (measured from ships)

Temperature change 1951-2010

Precipitation change 1951-2010

1982

 Median minimum extent of ice cover (1979-2000)

Changes of cryosphere

glacier retreat

Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1967–2012	0.03	-0.13	-0.50	-0.63	-0.90	-1.31	n/a	n/a	n/a	n/a	0.17	0.34	-0.40
1922–2005	n/a	n/a	-0.25	-0.35	n/a	n/a	n/a	n/a	n/a	0.24	n/a	n/a	n/a

Sea level rise

3. How will climate change?

Emission scenarios

 emissions scenario – estimate of future evolution of greenhouse gas emissions

* based on estimates of future socioeconomic development

★ but we do NOT know the future socioeconomic development → several different scenarios

* individual scenarios describe "alternative futures"

Families of scenarios

How we model (simulate) climate ...

- * global climate model is "run"
 - for given external forcings that affect climate
 - natural
 - solar activity
 - volcanic activity (eruptions)
 - anthropogenic
 - greenhouse gases
 - aerosols
 - for the required time interval (tens to hundreds of years)

★try to google it... ☺

Climatic system

Real CO₂ emissions **vs. emission scenarios**

Future climate change – surface temperature, Europe

Temperature change Temperature change

MAN

difference (warming) against 1980-2009 (in °C) average of ensemble of RCMs

Temperature change SO

1.5 2 2.5 3 3.5 4

Temperature change

Temperature change

2046-2075

Temperature change

Temperature change

Future climate change precipitation, Europe

cipitation change

MAN

Precipitation chang

recipitation char

JJA

2021-2050

2046-2075

Precipitation change

ecipitation change

Precipitation change

Precipitation chang

Fischer et al., Int. J. Climatol., 2012

36 28 20 12 4 4 12 20 28 36

Future climate change – drought

70

100

40

10

>

of today's 100-year events:

<

change of return period of 100-year drought relative to 1961-90

Future climate change – sea level

Climate change impacts on potential yield of winter wheat

European corn borer (Ostrinia nubialis)

M.Trnka et al., *Ecol. Modell.*, 2007

ø

0 12,5 25 50

ø

0 12,5 25 50 75

ø

d)

5. Why is climate changing?

6. And what to do against climate change?

*** way 2: mitigation**

measures to reduce climate change itself

way 2: mitigation

sures to reduce climate change itself

а

a) reduction of GHG emissions

way 2: mitigation – measures to reduce climate change itself b) removal of GHG & their storage (sequestration)

* way 2: mitigation
 – measures to reduce climate change itself
 c) reduction of absorbed solar radiation
 (geoengineering)

