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In this paper, a numerically stable method of calculating atomic integrals is suggested. The commutation
relations among the components of the angular momentum and the Runge-Lenz vector are used to deduce
recurrence relations for the Sturmian radial functions. The radial part of the one- and two-electron integrals is
evaluated by means of these recurrence relations. The product of two radial functions is written as a linear
combination of the radial functions. This enables us to write the integrals over four radial functions as a linear
combination of the integrals over two radial functions. The recurrence relations for the functions are used to
derive the recursion relations for the coefficients of the linear combination and for the integrals over two
functions.
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I. INTRODUCTION

This paper is concerned with the calculation of atomic
wave functions and atomic integrals in an algebraic way.
This algebraic approach compares favorably with the analyti-
cal one. The algebraic approach enables us to handle the
numerical instabilities encountered when calculating atomic
integrals. There is also an inherent elegance in this approach.

The accuracy of the spectroscopic measurements achieved
such a level that parity violating effects of the weak interac-
tions on the atomic spectra can be measured. For a review of
these exciting developments see, e.g., Refs. �1,2�. Together
with the corresponding theoretical calculations, see, e.g.,
Ref. �3�, this provides bounds on the mass of new neutral
bosons predicted by extensions of the standard model. These
bounds are tighter than those achieved in the present collider
experiments �3�. Undoubtedly, the search for effects of the
physics beyond the standard model on the atomic spectra
will continue. More accurate measurements and calculations
will be made. In this connection we would like to draw at-
tention to the fact that there is an obstacle in further improve-
ment of the theoretical calculations.

Let us restrict our discussion to the cases when the motion
of electrons can be treated in the first approximation as non-
relativistic. Only slight modifications of the following dis-
cussion are needed to treat the cases when relativity has to be
taken into account from the very beginning. The most accu-
rate approximate method for solution of the Schrödinger
equation for many-electron atoms is the method of configu-
ration interaction �CI�. It consists of expanding the exact
wave function into the antisymmetrized products of one-
electron spin orbitals. The orbital component of the spin or-
bitals is the product of the radial and angular parts.

The CI method can be systematically improved by enlarg-
ing the set of one-electron spin orbitals. However, in doing
so the following difficulty is encountered. If we consider the
orthogonal set of one-electron spin orbitals, we have to in-
clude the spin orbitals with radial functions having large
number of nodes into the set. These functions change their

sign frequently. Calculation of the matrix elements of the
Coulomb interaction between these functions in finite preci-
sion arithmetics corresponds, from numerical point of view,
to the subtraction of two infinities. If we consider nonor-
thogonal basis set, then we just shift the problem of numeri-
cal instabilities from the calculation of the integrals to the
diagonalization of Hamiltonian matrix. So far the numerical
instabilities have not been analyzed in a systematic way.
Thus, they are not controlled. The difficulty caused by nu-
merical instabilities is evident when observing the published
numerical calculations.

The form of one-electron spin orbitals is in principle ar-
bitrary. However, to achieve rapid convergence of the CI
method, the Sturmian basis set is usually applied, see, e.g.,
Refs. �4–8�. This set is obtained from hydrogenic basis set
via energy-dependent scaling transformation. The solution of
the Schrödinger equation for the hydrogen atom is found to
be a product of radial and angular functions. The difference
in dealing with radial and angular functions is striking. The
angular functions are found from commutation relations of
so�3� algebra. This enables one to transform the angular in-
tegrations of complicated expressions to manageable alge-
braic manipulations �9–11�. On the other hand, the radial
functions are not found from symmetry considerations but as
solutions of differential equation. However, this leads to
much less manageable numerical instabilities in the radial
part of the integration mentioned above.

This observation is the chief motivation for the search of
the algebraic treatment of the radial functions presented in
this paper. This algebraic treatment is facilitated by high
symmetry of the hydrogen atom. There are six operators
commuting with hydrogenic Hamiltonian when neglecting
spin. They consist of components of angular momentum and
components of the Runge-Lenz vector. This vector is integral
of motion also in the classical theory. This is a direct conse-
quence of the fact that the classical orbit in Coulomb poten-
tial is a conic section. The Runge-Lenz vector has the direc-
tion of the principal axis of the conic section. Its magnitude
equals to the eccentricity of the conic section, see, e.g., Ref.
�12�. These six operators do not mutually commute. How-
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ever, they are closed under commutation and form so�4� al-
gebra. In addition, there are three radial operators closed un-
der commutation that form so�2,1� algebra. After the energy-
dependent scaling transformation so�4� algebra can be
merged with so�2,1� algebra into so�4,2� algebra, see, e.g.,
Ref. �13�.

The commutation of the Runge-Lenz vector with hydro-
genic Hamiltonian was realized by Pauli even before the dis-
covery of the Schrödinger equation. It was further elaborated
by Fock and Bargmann �for an English translation of the
original papers see Ref. �14��. Despite the fact that this high
symmetry of the hydrogen atom has been known for such a
long time it was seldom applied to more complicated atoms.
Particularly, Herrick and Sinanoglu applied it to the classifi-
cation of the doubly excited states of two-electron atoms
�15�. Further, de Prunele applied it to the evaluation of the
matrix elements of Coulomb interaction in the basis used by
Herrick and Sinanoglu �16�.

The first aim of this paper is to explore the high symmetry
of the hydrogen atom and to relate it to the properties of
radial functions. So far, only partial symmetry has been uti-
lized via so�2,1� algebra of radial operators �13,17�. This
provided the recurrence relations for radial functions with
different principal number n but with the same orbital num-
ber l. The ultimate goal is to examine if so�4� algebra relates
radial functions with different orbital numbers l. The second
aim of this paper is to show that these relations for the radial
functions can be used to numerically stabilize the calculation
of the matrix elements of Coulomb interaction.

The paper is organized as follows. In Sec. II the energy
spectrum of the hydrogen atom and the recurrence relations
connecting the radial functions of the hydrogen atom with
the same principal number n but different orbital number l
are deduced. In Sec. III we consider so�2,1� algebra of radial
operators. We make the energy-dependent scaling to trans-
form the set of hydrogen basis functions pertaining to the
discrete part of the spectrum to the Sturmian basis set. It is
shown that the existence of so�2,1� algebra implies recur-
rence relations connecting the radial functions with the same
orbital number l but different principal number n. Finally,
these relations are combined with the ones derived in Sec. II
to deduce the relations that are advantageous for further cal-
culations. The rest of the paper is devoted to the applications
of these recurrence relations. In Sec. IV the calculation of the
matrix elements of Coulomb interaction is described in de-
tail. First, the multipole expansion of the Coulomb potential
is used to separate the radial and angular degrees of freedom.
Further, the product of two radial functions is written as a
linear combination of the radial functions. Numerically
stable recurrence relations for the coefficients of the linear
combination are derived. The linearization of the product of
radial functions is used to write the integrals over four radial
functions as the linear combination of the integrals over two
radial functions. From recurrence relations for the radial
functions, the recurrence relations for the reduced integrals
are derived. This section constitutes a major development of
the computation of the radial integrals. In Sec. V the method
developed in this paper is used for CI calculation of the 1 1S,
2 3S, and 2 3S states of helium. In Appendix A the algebra of
the angular operators is studied and the action of the angular

operators on the angular functions is determined. This appen-
dix summarizes the results concerning the so�3� vector op-
erators necessary for the purposes of this paper. Finally, in
Appendix B the one-electron integrals needed in Sec. IV are
calculated.

To make the paper understandable for wide audience we
completely avoid all the nomenclature of the mathematical
theory of Lie algebras. To understand this paper it is suffi-
cient to know the basic notions of quantum mechanics such
as commutator, eigenvectors, and eigenvalues. The atomic
units and Einstein summation convention will be used
throughout this paper.

II. HYDROGEN ATOM

In this section the algebraic solution of hydrogen atom is
given. It is shown that the Runge-Lenz vector commutes
with the Hamiltonian of the hydrogen atom and it is a special
case of so�3� vector operator. The matrix elements of so�3�
vector operators between spherical harmonics yield the en-
ergy spectrum and the recurrence relations for the radial
functions of the hydrogen atom. These recurrence relations
connect the radial functions with the same principal number
n but different orbital numbers l. The matrix elements of
so�3� vector operators between spherical harmonics needed
in this section are derived in Appendix A.

A. Energy spectrum of the hydrogen atom

Let us consider the problem of the nonrelativistic hydro-
gen atom

H�n,l,m� = −
1

2n2 �n,l,m� , �1�

where the Hamiltonian is given by

H = −
�2

2
−

1

r
. �2�

At this point we assume that n is a positive real number.
Later on we show that n has to be a positive integer.

Because of the spherical symmetry of the problem, it is
advantageous to make the transition between Cartesian and
spherical coordinates

xk = rnk. �3�

Here, r is the radial distance and nk are components of the
corresponding unit vector

n� = �sin � cos �,sin � sin �,cos �� . �4�

Indices j, k and so on, range from 1 to 3. The letter i is
reserved for the square-root of minus one.

Using the chain rule for the differentiation of composed
functions, expression of the operator �k in terms of the vari-
ables r, �, and � reads

�k =
�

�xk
= nk

�

�r
+

�k
n

r
. �5�

Here, the angular differential operator �n was introduced by
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�n = �−
sin �

sin �

�

��
+ cos � cos �

�

��
,
cos �

sin �

�

��

+ sin � cos �
�

��
,− sin �

�

��
� . �6�

Decomposition of the operators r� and � into the radial and
angular parts simplifies expressions for the operators repre-
senting other observables. This is described in detail in Ap-
pendix A.

We separate the radial and angular variables also in the
wave function

	r��n,l,m� = 	r�n,l�	n� �l,m� = Rn,l�r/n�Yl,m�n�� . �7�

It will be clear later why we write the argument of the radial
function as r /n. By inserting this separation into Eq. �1� and
using Eqs. �A8� and �A9� of Appendix A, we obtain the
well-known equation for the radial functions


 pr
2

2
+

l�l + 1�
2r2 −

1

r
�Rn,l�r/n� = −

1

2n2Rn,l�r/n� . �8�

Here, pr denotes the radial momentum

pr = − i� �

�r
+

1

r
� . �9�

At this point, the differential equation �8� is usually solved.
However, there is another approach based on the commuta-
tivity of the Runge-Lenz vector with the Hamiltonian �2�.
The latter approach will prove to be more advantageous
when dealing with many-electron atoms.

The Runge-Lenz vector is given by

X� =
1

2
�L� � p� − p� � L� � + n� , �10�

Using the decompositions �3� and �5�, it can be rewritten into
the more suitable form

X� = n��− 1 −
�

�r
+

L2

r
� + �n �

�r
. �11�

Commutativity of the components of Runge-Lenz vector
with Hamiltonian �2� can be proved using Eqs. �A14� and
�A15� of Appendix A and Eq. �11�.

It is seen from Eq. �11� that the Runge-Lenz vector acts
on spherical harmonics in the same way as the operator

V� = f�r�n� + g�r��n. �12�

Here, f�r� and g�r� are operators acting on radial functions. It
follows from the representation theory of so�4� algebra that
the third component of the operator �12� acts on the spherical
harmonics as �see Eqs. �A28� and �A32� of Appendix A�

V3�l,m� = cl
��l + m��l − m��l − 1,m�

+ cl+1
��l + 1 + m��l + 1 − m��l + 1,m� . �13�

The coefficients cl are determined from Eq. �A34� of Appen-
dix A

cl
2�2l − 1��l + m� + cl+1

2 �l + 1 − m��2l + 3�

= 	l,m��V2 − i�V1,V2���l,m� . �14�

Runge-Lenz vector commutes with Hamiltonian �2�.
Thus, Eqs. �13� and �14� can be in this case written as

X3�n,l,m� = cl
n��l + m��l − m��n,l − 1,m�

+ cl+1
n ��l + 1 + m��l + 1 − m��n,l + 1,m�

�15�

and

�cl
n�2�2l − 1��l + m� + �cl+1

n �2�l + 1 − m��2l + 3�

= 	n,l,m��X2 − i�X1,X2���n,l,m�

= 	n,l,m�1 + 2H�L2 + 1� − 2HL3�n,l,m�

=
n2 − l�l + 1� − 1 + m

n2 . �16�

Comparing the terms proportional to the zeroth and first
power of m on both sides of the last equation yields

cl
n =

1

n
� �n − l��n + l�

�2l + 1��2l − 1�
. �17�

Expressions for X2 and �X1 ,X2� used in Eq. �16� can be ob-
tained from Eqs. �1� and �11� and from Eqs. �A1�, �A2�,
�A4�–�A6�, �A9�, �A10�, and �A13�–�A15� of Appendix A.

Since operator X� is Hermitian and its third component is
real, coefficients cl

n have to be real. It is seen from the last
equation and Eq. �15� that this holds only if the maximum
allowed value of l for fixed n is l=n−1 and n is an integer.
This finishes the derivation of Bohr formula for the energy
levels of the hydrogen atom. The derivation given here is
more or less the same as that of Pauli �14�. Let us also note

that six operators L� and X� are closed under commutation.
This is usually referred to as so�4� algebra �13�.

B. Wave functions of the hydrogen atom

We would like to point out that we can also derive the
form of radial functions Rn,l�r� without solving Eq. �8�. We
compare the action of operator X3 on the states �n , l ,m� as
calculated from Eq. �11� and from Eq. �15�. To get the action
of operator X3 given by Eq. �11� we need to know the action
of operators n3 and �3

n on spherical harmonics. Operator n� is
special case of operator �12�. The matrix elements of the
operator n3 are given by Eqs. �13� and �14�. Since obviously
n2=1 and �n1 ,n2�=0 we have

n3�l,m� = bl,m�l − 1,m� + bl+1,m�l + 1,m� , �18�

where

bl,m =� �l + m��l − m�
�2l − 1��2l + 1�

. �19�

The action of the third component of operator �n follows
from Eq. �A16� of Appendix A and Eq. �18�
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�3
n�l,m� = �l + 1�bl,m�l − 1,m� − lbl+1,m�l + 1,m� . �20�

Using Eqs. �11�, �18�, and �20�, we get that the third compo-
nent of the Runge-Lenz vector acts on the states �7� as

X3	r��n,l,m� = �l
d

dr
− 1 +

l�l + 1�
r

�Rn,l�r/n�bl,mYl−1,m�n��

− �− �l + 1�
d

dr
− 1 +

l�l + 1�
r

�
�Rn,l�r/n�bl+1,mYl+1,m�n�� . �21�

Finally, we insert the separation �7� into Eq. �15�. Since
the spherical harmonics form an orthonormal basis set, the
terms proportional to Yl−1,m�n�� in Eqs. �15� and �21� have to
be equal:

�l
d

dr
− 1 +

l�l + 1�
r

�Rn,l�r/n� =
�n2 − l2

n
Rn,l−1�r/n� . �22�

The terms proportional to Yl+1,m�n�� in Eqs. �15� and �21�
have to be equal as well, i.e.,

��l + 1�
d

dr
+ 1 −

l�l + 1�
r

�Rn,l�r/n�

= −
�n2 − �l + 1�2

n
Rn,l+1�r/n� . �23�

Considering the last equation for l=n−1, we get the first
order differential equation for the radial function Rn,n−1�r�,
whose solution reads

Rn,n−1�r/n� = Kn�r/n�n−1e−r/n. �24�

Considering Eq. �22� for l descending from n−1 to 0, the
remaining radial functions Rn,l�r /n� are obtained by differen-
tiation. Equations �22� and �23� were also derived in Ref.
�18� from different considerations. In that paper it is de-
scribed how these equations can be used for the calculation
of the intensities of the hydrogen atom.

III. STURMIAN BASIS SET

In this section, the transition from the discrete part of the
hydrogenic basis set to the Sturmian basis set is performed
via energy-dependent scaling. The ladder operators for the
radial functions are constructed. These operators yield the
recurrence relations for the radial functions with the same
orbital number l. These recurrence relations for the radial
functions are combined with those derived in the previous
Section to generate additional recurrence relations. Finally,
the orthonormality relations of the Sturmian basis set are
discussed.

A. Energy-dependent scaling

For variational calculation of the more complicated atoms
the hydrogenic functions are not convenient. The reason is
that the Hamiltonian given by Eq. �2� has both discrete and
continuous spectra. Therefore, the discrete spectrum does not
form a complete basis set. The incompleteness of the discrete

hydrogenic functions is caused by the presence of factor 1 /n
in the argument of the exponential function, see Eq. �24�.
Therefore we make the energy-dependent scaling r→rn.
Equation �8� then takes the form


 pr
2

2
+

l�l + 1�
2r2 −

n

r
�Rn,l�r� = −

1

2
Rn,l�r� . �25�

In Eq. �8�, we considered different energy levels labeled by n
for fixed nuclear charge Z=1, while in Eq. �25�, we consider
different nuclear charges Z=n for fixed energy level E=
−1/2.

If we multiply Eq. �25� by r we can rewrite it into the
form of the eigenvalue problem

T3Rn,l�r� = nRn,l�r� , �26�

where

T3 =
r

2
�pr

2 +
l�l + 1�

r2 � +
r

2
. �27�

B. Ladder operators for radial functions

The great advantage of Eq. �26� is that the spectrum of
operator T3 is purely discrete. This is most easily seen by
constructing step-up and step-down operators

T± =
r

2
�pr

2 +
l�l + 1�

r2 � −
r

2
± irpr. �28�

It follows from Eqs. �27� and �28� that

�T3,T±� = ± T±. �29�

Acting with this operator equation on the radial functions
Rn,l�r�, we get �see, e.g., Refs. �13,19,20��

T±Rn,l�r� = ��n ± l ± 1��n � l�Rn±1,l�r� . �30�

Operators T3 and T± are closed under commutation. This is
related to the existence of the radial so�2,1� algebra, as de-
tailed in Refs. �13,17,19�. With the help of operators T3 and
T± we can, for example, determine action of the radial coor-
dinate and derivative with respect to radial coordinate on the
radial functions, namely,

2rRn,l�r� = �2T3 − T+ − T−�Rn,l�r�

= 2nRn,l�r� − ��n + l + 1��n − l�Rn+1,l�r�

− ��n − l − 1��n + l�Rn−1,l�r� �31�

and

2r� d

dr
+

1

r
�Rn,l�r� = �T+ − T−�Rn,l�r�

= ��n + l + 1��n − l�Rn+1,l�r�

− ��n − l − 1��n + l�Rn−1,l�r� , �32�

respectively. These equations follow from Eqs. �9�, �26�–
�28�, and �30�.
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C. Recurrence relations

In the previous section we derived recurrence relations for
the radial functions of hydrogen, Eqs. �22� and �23�. By mak-
ing energy-dependent scaling r→rn in these equations we
convert them to the equations for the Sturmian radial func-
tions


r� d

dr
+

1

r
� −

n

l
r + l�Rn,l�r� =

�n2 − l2

l
rRn,l−1�r� �33�

and


r� d

dr
+

1

r
� +

n

l + 1
r − �l + 1��Rn,l�r�

=
�n2 − �l + 1�2

l + 1
rRn,l+1�r� . �34�

Thus, Eqs. �31� and �32� connect the radial functions with
the same l and different n. The last two equations connect the
radial functions with the same n and different l. We could
have finished at this point. However, for the purposes of the
following Section it is advantageous to combine Eqs.
�31�–�34� to additional recurrence relations.

We apply Eqs. �31� and �32� to the left-hand side of the
last two equations. After some manipulation we obtain

2rRn,l�r� = ��n + l + 1��n + l + 2�Rn+1,l+1�r�

+ ��n − l − 2��n − l − 1�Rn−1,l+1�r�

− 2�n2 − �l + 1�2Rn,l+1�r� �35�

and

2rRn,l�r� = ��n − l��n + 1 − l�Rn+1,l−1�r�

+ ��n + l��n + l − 1�Rn−1,l−1�r� − 2�n2 − l2Rn,l−1�r� .

�36�

Further, we rewrite Eqs. �33� and �34�:

r� d

dr
+

l + 1

r
�Rn,l�r� =

�n2 − l2

l
rRn,l−1�r� +

n

l
rRn,l�r�

�37�

and

r� d

dr
−

l

r
�Rn,l�r� =

�n2 − �l + 1�2

l + 1
rRn,l+1�r� +

n

l + 1
rRn,l�r�

�38�

and arrange the right-hand sides of the last two equations as
follows. In Eq. �37� we use Eq. �31� on the first term and Eq.
�36� on the second term. In Eq. �38� we use Eq. �31� on the
first term and Eq. �35� on the second term. After some ma-
nipulation we get

2r� d

dr
−

l

r
�Rn,l�r� = − ��n + l + 1��n + l + 2�Rn+1,l+1�r�

+ ��n − l − 2��n − l − 1�Rn−1,l+1�r�
�39�

and

2r� d

dr
+

l + 1

r
�Rn,l�r� = − ��n − l��n + 1 − l�Rn+1,l−1�r�

+ ��n + l��n + l − 1�Rn−1,l−1�r� .

�40�

Equations �31�, �32�, �35�, �36�, �39�, and �40� will be used
for the calculation of one- and two-electron integrals in the
next section.

D. Orthonormality relations

Since functions Rn,l�r� are eigenfunctions of Hermitian
operator T3, they form an orthonormal basis set. However, in
contrast to the Hamilton operator �2� that is Hermitian with
respect to the inner product

	n1,l�H�n2,l� = 
0

�

r2Rn1,l�r�HRn2,l�r�dr , �41�

operator T3 is Hermitian with respect to the inner product

�n1,l�T3�n2,l� = 
0

�

rRn1,l�r�T3Rn2,l�r�dr . �42�

Consequently, while the wave functions of hydrogen are or-
thonormal with respect to the inner product

	n1,l�n2,l� = 
0

�

r2Rn1,l�r�Rn2,l�r�dr = �n1,n2
, �43�

the eigenfunctions Rn,l�r� of operator T3 are orthonormal
with respect to the inner product

�n1,l�n2,l� = 
0

�

rRn1,l�r�Rn2,l�r�dr = �n1,n2
. �44�

IV. MATRIX ELEMENTS OF THE COULOMB
INTERACTION

In this section, we apply results of the previous section to
the calculation of two-electron integrals. First, as usually, we
separate the radial and angular degrees of freedom by means
of the multipole expansion. Further, we write the product of
two radial functions as a linear combination of radial func-
tions. We thus reduce the integrals over four radial functions
to the integrals over two radial functions. For these reduced
integrals, we derive recurrence relations combining integra-
tion by parts with algebraic methods. Using result of this
section calculation of two-electron integrals is reduced to the
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calculation of one-electron integrals. Evaluation of one-
electron integrals is described in Appendix B.

A. Screened radial functions

In many-electrons atoms the electrons occupying different
orbitals “see” different effective nuclear charges. For ex-
ample, the dominant configuration of P states of two electron
atoms is the one in which the first electron occupies the s
orbital and the second electron occupies the p orbital. Now,
the electron occupying the s orbital is close to the nucleus
and its effective nuclear charge is close to the nuclear charge
Z. However, the electron occupying the p orbital is further
away from the nucleus and “sees” the charge Z of nucleus
“screened” by the charge of the electron in s orbital −1. Its
effective nuclear charge is therefore close to Z−1. Thus, to
get fast convergence of the variational method, we have to
consider different screening constants for different electrons.

For this purpose, instead of the “ordinary” radial func-
tions Rn,l�r�, we consider the “screened” radial functions
Rn,l��r�. The “screened” functions are obtained from “ordi-
nary” functions by the energy-independent scaling r→�r and
multiplication by �. This multiplication is to ensure the
proper normalization �44�. For example, the nodeless
“screened” functions Rl+1,l��r� read

Rl+1,l��r� =
2�

��2l + 1�!
�2�r�le−�r. �45�

This equation is obtained from Eq. �24� for r→rn� and from
Eq. �44�.

B. Separation of radial and angular degrees of freedom

Calculating the matrix elements of the Coulomb interac-
tion between two spin orbitals leads to the calculation of the
integrals

 d3r1 d3r2Rn1k,l1k
�r1�1k�Yl1k,m1k

�n�1�Rn2k,l2k
�r2�2k�

�Yl2k,m2k
�n�2�r12

−1Rn1j,l1j
�r1�1j�Yl1j,m1j

�n�1�Rn2j,l2j
�r2�2j�

�Yl2j,m2j
�n�2� . �46�

To separate the angular and radial degrees of freedom, we
expand r12

−1 in the multipole expansion

r12
−1 =

1

r�
�
l=0

� � r	

r�
�l

Pl�n�1 · n�2� , �47�

where r	=r1, r�=r2 if r1	r2 and r	=r2, r�=r1 if r1�r2.
Here, Pl�x� denotes the Legendre polynomials.

The angular part of the integration is achieved by the
methods developed by Racah, see, e.g., Refs. �9–11�. The
radial part of the integration involves calculation of integrals


0

�

dr1Rn1k,l1k
�r1�1k�Rn1j,l1j

�r1�1j�r1
l+2

�
r1

�

dr2Rn2k,l2k
�r2�2k�Rn2j,l2j

�r2�2j�r2
−l+1

+ 
0

�

dr1Rn1k,l1k
�r1�1k�Rn1j,l1j

�r1�1j�r1
−l+1

�
0

r1

dr2Rn2k,l2k
�r2�2k�Rn2j,l2j

�r2�2j�r2
l+2. �48�

C. Linearization of the product of two functions

It has been pointed out in Ref. �17�, that the products of
the radial functions of the same variable �such as
Rn1k,l1k

�r1�1k�Rn1j,l1j
�r1�1j�� appear in the integrals �48�. The

integration of the product of three spherical harmonics is
greatly simplified by virtue of the fact that the product of two
spherical harmonics can be written as a linear combination of
spherical harmonics. This is known as a special case of the
Wigner-Eckart theorem. Being inspired by that theorem, we
write

rpRn1,l1
��1r�Rn2,l2

��2r�

= �
n=l�+1

n1+n2−1+p

�n1,l1,�1,n2,l2,�2�n�pRn,l���r� , �49�

where l�= l1+ l2 and �=�1+�2. The number of the nodes of
function Rn,l���r� is n− l�−1. The product of the function
with n1− l1−1 nodes and the function with n2− l2−1 nodes is
the function with n1+n2−1− l�−1 nodes. Thus, this function
is composed only of the functions Rn,l���r� for which the
number of nodes n− l�−1 does not exceed n1+n2−1− l�−1.
Thus, the upper bound in the summation in Eq. �49� is n
=n1+n2−1 for p=0. For a nonzero p the upper bound is
deduced from Eq. �31�.

Let us determine coefficients �n1 , l1 ,�1 ,n2 , l2 ,�2 �n�p. Mul-
tiplying Eq. �49� by rRn�,l���r�, integrating over r and using
the orthonormality of radial functions, �44�, we obtain

�n1,l1,�1,n2,l2,�2�n��p

= 
0

�

rp+1Rn�,l���r�Rn1,l1
��1r�Rn2,l2

��2r�dr . �50�

Further, we multiply Eq. �49� by 2r. On the left-hand side of
Eq. �49� we let 2r act on the function Rn1,l1

��1r� according to
Eq. �31� where we substitute r→�1r. On the right-hand side
of Eq. �49� operator 2r acts on function Rn,l���r�. Thus we
arrive at equation

rpRn2,l2
��2r�

1

�1
�2n1Rn1,l1

��1r�

− ��n1 + l1 + 1��n1 − l1�Rn1+1,l1
��1r�

− ��n1 − l1 − 1��n1 + l1�Rn1−1,l1
��1r��
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= �
n=l�+1

n1+n2−1+p

�n1,l1,�1,n2,l2,�2�n�p
1

�

��2nRn,l���r� − ��n + l� + 1��n − l��Rn+1,l���r�

− ��n − l� − 1��n + l��Rn−1,l���r�� . �51�

We multiply the last equation by rRn�,l���r�, integrate over r
and use the orthonormality relations �44� and Eq. �50�:

2n1�n1,l1,�1,n2,l2,�2�n��

− ��n1 + l1 + 1��n1 − l1��n1 + 1,l1,�1,n2,l2,�2�n��

− ��n1 − l1 − 1��n1 + l1��n1 − 1,l1,�1,n2,l2,�2�n��

= �
n=l�+1

n1+n2−1+p

�n1,l1,�1,n2,l2,�2�n�p
�1

�

��2n�n�,n − ��n + l� + 1��n − l���n�,n+1

− ��n − l� − 1��n + l���n�,n−1� . �52�

After deleting the zero terms on the right-hand side, we ob-
tain the following recurrence relation for the coefficients
�n1 , l1 ,�1 ,n2 , l2 ,�2 �n�

�n1,l1,�1,n2,l2,�2�n�p
��n1 − l1 − 1��n1 + l1�

= 2�n1 − 1 −
�1n

�
��n1 − 1,l1,�1,n2,l2,�2�n�p

− ��n1 + l1 − 1��n1 − l1 − 2��n1 − 2,l1,�1,n2,l2,�2�n�p

+
�1

�
��n + l���n − l� − 1��n1 − 1,l1,�1,n2,l2,�2�n − 1�p

+
�1

�
��n − l���n + l� + 1��n1 − 1,l1,�1,n2,l2,�2�n + 1�p.

�53�

The last equation expresses coefficients
�n1 , l1 ,�1 ,n2 , l2 ,�2 �n�p through coefficients
�n1� , l1 ,�1 ,n2 , l2 ,�2 �n��p with n1� smaller than n1, but with n�
sometimes smaller and sometimes larger than n. But since
there are lower and upper bounds on the possible values of n,
see Eq. �49�, Eq. �53� can be used to lower the quantum
number n1 to l1+1. To lower the quantum number n2 to l2
+1 we apply Eq. �53� again exchanging this time n1 and n2,
l1 and l2, and �1 and �2 and taking into account that
�n1 , l1 ,�1 ,n2 , l2 ,�2 �n�p= �n2 , l2 ,�2 ,n1 , l1 ,�1 �n�p.

The value of coefficients �l1+1 , l1 ,�1 , l2+1 , l2 ,�2 �n�p is
obtained by inserting Eq. �45� into Eq. �49�. We thus obtain

�l1 + 1,l1,�1,l2 + 1,l2,�2�l1 + l2 + 1�0

=
2�1

l1+1�2
l2+1

��1 + �2�l1+l2+1� �2l1 + 2l2 + 1�!
�2l1 + 1�!�2l2 + 1�!

�54�

and

�l1 + 1,l1,�1,l2 + 1,l2,�2�n�0 = 0,n � l1 + l2 + 1. �55�

The case of a nonzero p is obtained from Eqs. �49� and �31�.
For example,

�l1 + 1,l1,�1,l2 + 1,l2,�2�l1 + l2 + 1�1

= 2�l1 + l2 + 1�
�1

l1+1�2
l2+1

��1 + �2�l1+l2+2� �2l1 + 2l2 + 1�!
�2l1 + 1�!�2l2 + 1�!

,

�56�

�l1 + 1,l1,�1,l2 + 1,l2,�2�l1 + l2 + 2�1

= − �2�l1 + l2 + 1�
�1

l1+1�2
l2+1

��1 + �2�l1+l2+2� �2l1 + 2l2 + 1�!
�2l1 + 1�!�2l2 + 1�!

,

�57�

and

�l1 + 1,l1,�1,l2 + 1,l2,�2�n�1 = 0, n � l1 + l2 + 2. �58�

Remarkably, the described method of calculating coefficients
�n1 , l1 ,�1 ,n2 , l2 ,�2 �n�p is numerically stable.

Using Eq. �49� for p=1, the integrals �48� can be written
as linear combination of the integrals �17�

PN1,N2

L1,L2,l��1,�2� + PN2,N1

L2,L1,l��2,�1� . �59�

Here,

PN1,N2

L1,L2,l��1,�2� = 
0

�

R̃N1,L1
��1r1�r1

l+1
r1

�

R̃N2,L2
��2r2�r2

−l dr2 dr1

�60�

and

PN2,N1

L2,L1,l��2,�1� = 
0

�

R̃N1,L1
��1r1�r1

−l

�
0

r1

R̃N2,L2
��2r2�r2

l+1 dr2 dr1, �61�

where we introduced the unnormalized radial functions

R̃n,l�r� related to the normalized functions Rn,l�r� via relation

R̃n,l�r� =� �n + l�!
�n − l − 1�!

Rn,l�r� . �62�

By using unnormalized functions the irrational factors are
conveniently eliminated.

The great advantage of our procedure is that the integrals
�60� can be evaluated much more easily than the original
integrals �48�. In the next subsection, we derive recurrence
relations for these integrals.

D. Recurrence relations for the integrals

1. Recurrence relations connecting integrals with different
values of N2 and L2

The recurrence relations connecting integrals �60� with
different values of N2 and L2 are derived from “analytic”
equation �17�

CALCULATION OF ATOMIC INTEGRALS USING… PHYSICAL REVIEW A 75, 022506 �2007�

022506-7




r1

�

r2� d

dr2
+

1

r2
��r2

−lR̃N2,L2
��2r2��dr2 = − r1

−l+1R̃N2,L2
��2r1�

�63�

obtained by integration by parts and from the “algebraic”
equations

2r� d

dr
+

1

r
�R̃n,l��r� = �n − l�R̃n+1,l��r� − �n + l�R̃n−1,l��r� ,

�64�

2r� d

dr
−

l

r
�R̃n,l�r� = − R̃n+1,l+1�r� + R̃n−1,l+1�r� , �65�

and

2r� d

dr
+

l + 1

r
�R̃n,l�r� = − �n − l��n + 1 − l�R̃n+1,l−1�r� + �n + l�

��n + l − 1�R̃n−1,l−1�r� . �66�

Equations �64�–�66� are obtained by substituting Eq. �62�
into Eqs. �32�, �39�, and �40�.

Inserting Eqs. �64�–�66� into Eq. �63�, multiplying Eq.

�63� by 2R̃N1,L1
�r1�1�r1

l+1 and integrating over r1 from zero to
infinity we obtain successively

− �N2 + L2�PN1,N2−1
L1,L2,l ��1,�2�

+ �N2 − L2�PN1,N2+1
L1,L2,l ��1,�2� − 2lPN1,N2

L1,L2,l��1,�2�

= − �N1,L1,�1�2r�N2,L2,�2� , �67�

PN1,N2−1
L1,L2+1,l��1,�2�

− PN1,N2+1
L1,L2+1,l��1,�2� + 2�L2 + 1 − l�PN1,N2

L1,L2,l��1,�2�

= − �N1,L1,�1�2r�N2,L2,�2� , �68�

and finally

�N2 + L2��N2 + L2 − 1�PN1,N2−1
L1,L2−1,l��1,�2�

− �N2 − L2��N2 − L2 + 1�PN1,N2+1
L1,L2−1,l��1,�2� − 2�L2

+ l�PN1,N2

L1,L2,l��1,�2�

= − �N1,L1,�1�2r�N2,L2,�2� . �69�

The one-electron integrals on the right-hand side of these
equations are given as

�N1,L1,�1�2r�N2,L2,�2� = 
0

�

2r2R̃N1,L1
��1r�R̃N2,L2

��2r�dr .

�70�

2. Recurrence relations connecting integrals with different
values of N1 and L1

To derive recurrence relations connecting the integrals
�60� with different values of N1 and L1, we need a modifica-
tion of “analytic” equation �63�, namely �17�


0

�

dr1 r1� d

dr1
+

1

r1
��r1

l+1R̃N1,L1
��1r1��

r1

�

dr2 R̃N2,L2
��2r2�r2

−l

= 
0

�

dr1r1
2R̃N1,L1

��1r1�R̃N2,L2
��2r1� �71�

obtained by integration by parts. By inserting the “algebraic”
equations �64�–�66� into Eq. �71� we obtain

− �N1 + L1�PN1−1,N2

L1,L2,l ��1,�2�

+ �N1 − L1�PN1+1,N2

L1,L2,l ��1,�2� + 2�l + 1�PN1,N2

L1,L2,l��1,�2�

= �N1,L1,�1�2r�N2,L2,�2� , �72�

PN1−1,N2

L1+1,L2,l��1,�2�

− PN1+1,N2

L1+1,L2,l��1,�2� + 2�L1 + l + 2�PN1,N2

L1,L2,l��1,�2�

= �N1,L1,�1�2r�N2,L2,�2� , �73�

and, finally,

�N1 + L1��N1 + L1 − 1�PN1−1,N2

L1−1,L2,l��1,�2�

− �N1 − L1��N1 − L1 + 1�PN1+1,N2

L1−1,L2,l��1,�2�

+ 2�l + 1 − L1�PN1,N2

L1,L2,l��1,�2�

= �N1,L1,�1�2r�N2,L2,�2� . �74�

3. Discussion

By means of recurrence relations for the radial functions,
we have derived recurrence relations for the integrals. We
note that Eq. �67� and �72� were derived already in Ref. �17�.
As is clear from the above derivation, these equations result
from Eq. �64�. The latter can be traced back to commutation
relations �29�. Equation �64� connects the radial functions
with different principle numbers n but the same orbital num-
ber l. Consequently, Eqs. �67� and �72� connect the values of
integrals PN1,N2

L1,L2,l��1 ,�2� with different principal numbers N1

and N2, but with the same orbital numbers L1 and L2. On the
other hand, Eqs. �68�, �69�, �73�, and �74� are derived for the
first time here. They result from Eqs. �65� and �66�. The
latter can be traced back to the commutation relations be-
tween operators pertaining to so�4� algebra. Equations �65�
and �66� connect the radial functions with different principle
numbers n and with different orbital number l. Consequently,
Eqs. �68�, �69�, �73�, and �74� connect the values of integrals
PN1,N2

L1,L2,l��1 ,�2� with different principal numbers N1 and N2

and with different orbital numbers L1 and L2.
In Ref. �17� we found by experimentation with MAPLE

that Eqs. �67� and �72� acquire very simple solution in the
cases when the right-hand side vanishes. This appears either
for �1=�2, L1=L2 and �N1−N2��1, see Eqs. �44� and �31�, or
for �1=�2, L1	L2 and N1�N2+1, see discussion after Eq.
�B12� below. Further, we found that integrals PN1,N2

l,L2,l ��1 ,�1�
vanish for N1�N2. At that time we did not know Eqs. �68�,
�69�, �73�, and �74�. The information found by experimenta-
tion is contained in these equations.
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Now, we have to use Eqs. �67�–�74� for the actual calcu-
lation of integrals PN1,N2

L1,L2,l��1 ,�2� in such a way that the sim-
plification mentioned above comes out in a numerical stable
way. For example, as mentioned above, integrals
PN1,N2

l,L2,l ��1 ,�1� equal zero for N1�N2. This zero cannot result
from a subtraction of two large numbers.

With this in mind we combine Eqs. �67� and �68� into a
single equation

− 2lPN1,N2

L1,L2+1,l��1,�2� − 2�L2 + 1�PN1,N2+1
L1,L2+1,l��1,�2�

+ 2�L2 + 1 − l��N2 + L2 + 1�PN1,N2

L1,L2,l��1,�2�

= − �N1,L1,�1�2r�N2,L2 + 1,�2�

− �N2 + L2 + 1��N1,L1,�1�2r�N2,L2,�2� . �75�

The right-hand side of this equation can be brought into the
form

−
2�L2 + 1�

�2
��N1,L1,�1�N2 + 1,L2 + 1,�2�

− �N1,L1,�1�N2,L2 + 1,�2�� ,

where

�N1,L1,�1�N2,L2,�2� = 
0

�

rR̃N1,L1
��1r�R̃N2,L2

��2r�dr .

�76�

Here, we used equations

2�2rR̃N2,L2
��2r� = R̃N2+1,L2+1��2r� + R̃N2−1,L2+1��2r�

− 2R̃N2,L2+1��2r� �77�

and

2�2rR̃N2,L2+1��2r�

= 2N2R̃N2,L2+1��2r�

− �N2 − L2 − 1�R̃N2+1,L2+1��2r�

− �N2 + L2 + 1�R̃N2−1,L2+1��2r� . �78�

These equations were obtained by substituting Eq. �62� into
Eqs. �31� and �35�, respectively.

Further, we combine Eqs. �67� and �69� into a single equa-
tion

2L2�N2 + L2 − 1�PN1,N2−1
L1,L2−1,l��1,�2�

− 2l�N2 − L2�PN1,N2

L1,L2−1,l��1,�2� − 2�L2 + l�PN1,N2

L1,L2,l��1,�2�

= − �N1,L1,�1�2r�N2,L2 − 1,�2��N2 − L2�

− �N1,L1,�1�2r�N2,L2,�2� . �79�

The right-hand side of this equation can be simplified into
the form

−
2L2

�2
��N2 + L2 − 1��N1,L1,�1�N2 − 1,L2 − 1,�2�

− �N2 − L2��N1,L1,�1�N2,L2 − 1,�2�� .

Here we used Eq. �78� and equation

2�2rR̃N2,L2
��2r� = �N2 − L2 + 1��N2 − L2�R̃N2+1,L2−1��2r�

+ �N2 + L2��N2 + L2 − 1�R̃N2−1,L2−1��2r�

− 2�N2 + L2��N2 − L2�R̃N2,L2−1��2r� . �80�

This equation is obtained by inserting Eq. �62� into Eq. �36�.
Similarly, we put together Eqs. �72� and �73�

− 2�L1 + 1�PN1+1,N2

L1+1,L2,l��1,�2� + 2�l + 1�PN1,N2

L1+1,L2,l��1,�2�

+ 2�L1 + l + 2��N1 + L1 + 1�PN1,N2

L1,L2,l��1,�2�

=
2�L1 + 1�

�1
��N1 + 1,L1 + 1,�1�N2,L2,�2�

− �N1,L1 + 1,�1�N2,L2,�2�� , �81�

and Eqs. �72� and �74�

2L1�N1 + L1 − 1�PN1−1,N2

L1−1,L2,l��1,�2� + 2�N1 − L1��l + 1�

�PN1,N2

L1−1,L2,l��1,�2� + 2�l + 1 − L1�PN1,N2

L1,L2,l��1,�2�

=
2L1

�1
��N1 + L1 − 1��N1 − 1,L1 − 1,�1�N2,L2,�2�

− �N1 − L1��N1,L1 − 1,�1�N2,L2,�2�� . �82�

We note that considering the last equation for �2=�1 and
L1= l+1 together with orthonormality relations �44� yields
PN1,N2

l,L2,l ��1 ,�1�=0 in a numerically stable way, as desired.

E. Actual calculations of the integrals

The above equations can be used for actual calculations of
the integrals PN1,N2

L1,L2,l��1 ,�2� as follows. We set PN1,N2

L1,L2,l��1 ,�2�
=0 whenever N1	L1+1 or N2	L2+1. Further, we assume
that we know how to calculate the one-electron integrals
�N1 ,L1 ,�1 �N2 ,L2 ,�2�. Calculation of these integrals is left to
Appendix B.

1. Case L1ÅL2

We can use Eq. �81� repeatedly to lower the value of L1 to
l and to consider Eq. �82� for L1= l+1 to calculate the inte-
grals PN1,N2

l,L2,l ��1 ,�2�. Similarly, we can use Eq. �75� repeatedly
to lower the value of L2 to l and to consider Eq. �75� for
L2= l−1 to calculate the integrals PN1,N2

L1,l,l ��1 ,�2�. However,
this way of calculation of the integrals changes the difference
L1−L2. This is not advantageous because of the following
reason. As mentioned above, the integrals PN1,N2

L1,L2,l��1 ,�2� have
particularly simple form for �1=�2 and L1=L2. Proceeding in
this way we would calculate simple integrals PN1,N2

L1,L1,l��1 ,�1�
through the more complicated integrals PN1,N2

L1,L2,l��1 ,�1� with
L1�L2.
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The better way is to reduce the integrals with L1�L2 only
to the case L1=L2. In the case L1 greater than L2 we use Eq.
�81� repeatedly to lower the value of L1 to L2. In the opposite
case L2 greater than L1 we use Eq. �75� to lower the value of
L2 to L1.

2. Case L1=L2� l

Further, we show that the integrals PN1,N2

L1,L2,l��1 ,�2� for the
case L1=L2� l can be reduced to the integrals PN1,N2

L1,L2,l��1 ,�2�
with L1=L2= l. We set L1=L and L2+1=L in Eqs. �75� and
�82�. We eliminate the integrals PN1,N2

L,L−1,l��1 ,�2� from these
equations and obtain

LPN1,N2+1
L,L,l ��1,�2� + lPN1,N2

L,L,l ��1,�2�

−
L

�2
��N1,L,�1�N2 + 1,L,�2� − �N1,L,�1�N2,L,�2��

=
�L − l��N2 + L�

l + 1 − L
�− L�N1 + L − 1�PN1−1,N2

L−1,L−1,l��1,�2�

− �N1 − L��l + 1�PN1,N2

L−1,L−1,l��1,�2�

+
L

�1
��N1 + L − 1��N1 − 1,L − 1,�1�N2,L − 1,�2�

− �N1 − L��N1,L − 1,�1�N2,L − 1,�2��� . �83�

This equation cannot be used in the case L= l+1, since the
denominator on the right-hand side vanishes.

Further, we set L1+1=L and L2=L in Eqs. �79� and �81�.
We eliminate integrals PN1,N2

L−1,L,l��1 ,�2� from these equations
and obtain

LPN1+1,N2

L,L,l ��1,�2� − �l + 1�PN1,N2

L,L,l ��1,�2�

+
L

�1
��N1 + 1,L,�1�N2,L,�2� − �N1,L,�1�N2,L,�2��

=
�L + l + 1��N1 + L�

l + L
�− L�N2 + L − 1�PN1,N2−1

L−1,L−1,l��1,�2�

+ l�N2 − L�PN1,N2

L−1,L−1,l��1,�2�

+
L

�2
��N2 + L − 1��N1,L − 1,�1�N2,L − 1,�2�

− �N2 − L��N1,L − 1,�1�N2,L − 1,�2��� . �84�

This equation can be used in all cases.
Using Eqs. �83� and �84� we calculate integrals

PN1,N2

L,L,l ��1 ,�2� through integrals PN1,N2

L−k,L−k,l��1 ,�2�. In actual cal-
culation we use Eq. �83� in cases N2	N1 and L� l+1. Oth-
erwise we use Eq. �84�. These equations are used repeatedly
until L−k= l.

The advantage of Eqs. �83� and �84� is that they calculate
integrals PN1,N2

L1,L2 ��1 ,�2� where L1=L2 through the integrals
with different quantum numbers N1, N2, L1, and L2, but again
with L1=L2. The advantage of this approach becomes appar-

ent when considering the case �1=�2. By virtue of the ortho-
normality relations, �44�, the one-electron integrals in Eqs.
�83� and �84� nearly always vanish.

3. Case L1=L2= l

Setting L2= l−1 and L1= l in Eq. �75� and setting L1= l
+1 and L2= l in Eq. �82� we obtain two equations for the
integrals PN1,N2

l,l,l ��1 ,�2�

PN1,N2

l,l,l ��1,�2� + PN1,N2+1
l,l,l ��1,�2�

=
1

�2
��N1,l,�1�N2 + 1,l,�2� − �N1,l,�1�N2,l,�2�� �85�

and

�N1 + l�PN1−1,N2

l,l,l ��1,�2� + �N1 − l − 1�PN1,N2

l,l,l ��1,�2�

=
1

�1
��N1 + l��N1 − 1,l,�1�N2,l,�2�

− �N1 − l − 1��N1 − 1,l,�1�N2,l,�2�� . �86�

In the case when N1	N2 and N1� l+1, we use the latter
equation, otherwise we use the former one.

V. APPLICATION TO HELIUM

The method for calculation of the one- and two-electron
matrix elements described in this paper is general and can be
applied to all atoms, or more generally to all one-center in-
tegrals. To show that the method really works and can be
used to obtain further insights into the atomic structure we
apply it to the CI calculation of helium.

A. Algebraic formulation

The Schrödinger equation for the two-electron atoms in
atomic units takes the form


−
��1�

2

2
−

��2�
2

2
−

Z

r1
−

Z

r2
+

1

r12
�
 = E
 , �87�

where Z is the charge of the nucleus. In the case of helium
we set Z=2. By scaling the coordinates of the electrons x��i�

→Z−1x��i�, i=1,2, we get an equivalent equation


−
��1�

2

2
−

��2�
2

2
−

1

r1
−

1

r2
+

1

Z

1

r12
�
 =

E

Z2
 . �88�

Since Hamiltonian in Eq. �88� commutes with the compo-
nents of the total angular momentum and spin of the elec-
trons, it is advantageous to expand the exact wave function
into the symmetry adapted basis functions

	r�1,r�2�k� = Rn1k,l1k
�r1�1k�Rn2k,l2k

�r2�2k�	n�1,n�2��l1k,l2k�,L,0�

+ �− 1�L+S−l1k−l2kRn1k,l1k
�r2�1k�Rn2k,l2k

�r1�2k�

�	n�2,n�1��l1k,l2k�,L,0� , �89�

where Rn,l��r� are the Sturmian radial function used through-
out the paper, S=0 refers to the singlets and S=1 to the
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triplets, and finally ��l1 , l2� ,L ,0� are the eigenstates of the
square of the total angular momentum

	n�1,n�2��l1,l2�,L,0� = �
m=−min�l1,l2�

min�l1,l2�

�l1,m,l2,

− m�L,0�Yl1,m�n�1�Yl2,−m�n�2� .

Here, ��� denotes the Clebsch-Gordan coefficients.
The calculation of the matrix elements of the operators in

Eq. �88� between two functions of the form �89� is reduced
either to the calculation of the two-electron integrals �46� or
to the calculation of the one-electron integrals. One encoun-
ters two kinds of the one-electron integrals. The first one are
the overlap integrals that are reduced to the integrals �70�

 d3r Rn1,l1
��1r�Yl1,m1

�n��Rn2,l2
��2r�Yl2,m2

�n��

=��n1 − l1 − 1�!
�n1 + l1�!

�n2 − l1 − 1�!
�n2 + l1�!

�n1,l1,�1�r�n2,l1,�2� .

�90�

The second one are the integrals involving the Laplace op-
erator. These are calculated as follows:

 d3r Rn1,l1
��1r�Yl1,m1

�n���−
�2

2
�Rn2,l2

��2r�Yl2,m2
�n��

= �2
0

�

rRn1,l1
��1/�2r�

r

2
�pr

2 +
l1�l1 + 1�

r2 �Rn2,l1
�r�dr

=��n1 − l1 − 1�!
�n1 + l1�!

�n2 − l1 − 1�!
�n2 + l1�!

�2�n1,l1,�1/�2�T3/2

+ �T+ + T−�/4�n2,l1,1� . �91�

Here, we used an expression for the Laplacian operator in
spherical coordinates �A8�, equation for spherical harmonics
�A9�, orthonormality of spherical harmonics, and Eqs. �27�
and �28�. The resulting matrix elements are by means of Eqs.
�26� and �30� reduced to the calculation of the overlap inte-
grals �76�.

B. Configuration interaction

In this paper we concentrate on calculation of S and P
states, i.e., on the states with L=0 and L=1 in Eq. �89�. It
follows from properties of Clebsch-Gordan coefficients that
for L=0 it must be l1k= l2k= lk and for L=1 it must be l1k
= l2k−1= lk. Thus, after taking into account all symmetries,
we have an infinite number of configurations labeled by set
of integers �n1k ,n2k , lk�, with k ranged from 1 to infinity.
When performing CI calculation we have to truncate this
basis set in some manner. Also, we are free to optimize the
screening constants �1k and �2k for different lk to achieve the
rapid convergence of CI method.

In this paper we are mainly interested in the numerical
stability of the integrals. The main source of the instabilities
are the integrals among highly excited configurations. To
know the integrals that have to be evaluated accurately, we

need to know the highly excited configurations that contrib-
ute significantly. Also, we need to know the values of the
screening constants that are close to the optimal ones.

Let us consider the second-order of the perturbation
theory

E�2� = �
k=1

�
Wk0

2

E0
�0� − Ek

�0� . �92�

It is seen that if the matrix elements Wk0 do not vary appre-
ciably with the increasing k, the contributions of the configu-
rations decrease with the increasing unperturbed energies
Ek

�0�=−�n1k
−2+n2k

−2� /2. Now it is clear that, for example,
�1s , �n+1�s� configurations are more significant than �2s , �n
+2�s� and �2p , �n+2�p� configurations. The latter are more
significant than �3s , �n+3�s�, �3p , �n+3�p�, and �3d , �n
+3�d� configurations and so on. Generally, for the S states
we consider �Nl , �N+n�l� configurations with l going from 0
to N−1 and with n going from 0 �for the singlets� or from 1
�for the triplets� to some b. For the P states we consider two
kinds of configurations: either �Nl , �N+n��l+1�� with l going
from 0 to N−1 and with n going from 1 to b, or ��N
+n�l ,N�l+1�� with l going from 0 to N−2 and with n going
from 0 to b.

The question now is how to choose b to pick up the sig-
nificant configurations. Let us suppose that we have fixed N
and l and we are adding to the basis set the states with
increasing n. We made variational calculation with k basis
functions and calculated the ground state of given symmetry
Ek. We add the �k+1�th state, obtain Ek+1 and calculate the
difference Ek+1−Ek. If this difference is less than �, contri-
bution of the states with fixed N and l is saturated. Addition
of the further states with fixed N and l and increasing n does
not improve the variational result significantly. For the triplet
S and P states we took �=10−9, for the singlet S state we
took �=10−7. In this way we determined b.

For �Ns , �N+n�s� configurations of the triplet S state and
�1s ,np� of the triplet P state we took �2k=1−1/Z and �1k

=1. In these configurations, the distinction between the “in-
ner” and “outer” electrons is meaningful. The “inner” elec-
tron “sees” the nuclear charge and the “outer” electron
“sees” the nuclear charge screened by the “inner” electron.
For other configurations we took �1k=�2k=1.

Tables I and II summarize our findings about significant
configurations for the S and P states, respectively. For low N
the contribution of the states with small l=0,1 ,2 is dominant
and we have to take large number of the excitations of the
“outer” electron. As we move to larger values of N, the con-
tribution of the states with small l saturates. The dominant
contribution is shifted to the states with l=3,4 ,5. Also, as N
increases the contributions of the configurations with larger n
goes down. In other words, as we are moving to the higher
excited states the electrons have tendency to have equal prin-
cipal quantum numbers.

However, it is seen from Tables I and II that precise de-
pendence of b on N and l that cuts the unsignificant configu-
rations is anything but simple. Perhaps labeling of the con-
figurations by means of the approximate quantum numbers
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as used by Herrick and Sinanoglu �15� provides the desired
“selection rule.”

C. Results and discussion

We first discuss accuracy of the eigenvalues and then nu-
merical stability of the integrals. The results presented in
Tables III–V show that after relatively fast convergence for
small N, the convergence of CI slows down for larger N. The
results were compared with those obtained in Ref. �20� with
the method of the explicitly correlated functions. As ex-
pected, the result for the ground state is not impressive. It is
well known that electron-electron correlation for the lowest
state of two-electron atoms is very strong. Thus, the results
obtained within the orbital method are relatively poor in

comparison with those obtained by means of the explicitly
correlated functions, see, e.g., Refs. �6,17,21,22�. The latter
method has the disadvantage that its extension to the atoms
with more than two electrons is very complicated. Three-
electron atoms are just on the margin of feasibility �23�. The
accuracy of our calculation is much better for the excited
states. Our results for 2 3S and 2 3P states are better than 1
part in 106. Considering the simplicity of the basis set used
here in comparison with that used in Ref. �20�, these results

TABLE I. The basis set used for configuration interaction for the
S states. �Nl , �N+n�l� configurations are ordered according to the
principal quantum number N of the “inner” electron. For fixed N,
the orbital quantum number l runs from 0 to N−1. For fixed N and
l the difference n between the principal quantum numbers of the
“outer” and “inner” electron ranges from 0 �for the singlets� or from
1 �for the triplets� to b. b serves to cut the contribution of the states
with large n that do not significantly improve the variational result.
b was determined from numerical experiments, see the main text for
the details.

State Interval b

1S N	12, l	3 9

N	12, l�3 9− �l−2�
12N18 6− �l−4�

3S N5 18−N−2l

6N8 18−N− l

9N13 18−N− �l−4�

TABLE II. The same as in Table II but for the P states. The only
difference is that in this case we have two kinds of configurations
�Nl , �N+n��l+1�� and ��N+n�l ,N�l+1��.

Configurations Interval b

�Nl , �N+n��l+1�� N=1 15

N=2 13−2 � l−1�
N=3 10−2 � l−1�

4N8, l	4 7

4N8, l�4 7− �l−3�
9N13, l	7 4

9N13, l�7 4− �l−6�
��N+n�l ,N�l+1�� N=2 14

N=3 13−2�l−1�
4N5 7

6N10, l	4 5

6N10, l�4 5− �l−3�
11N13, l	7 5− �N−10�
11N13, l�7 5− �N−10�− �l−6�

TABLE III. Variational energy levels EN of the ground state of
helium obtained by diagonalization of the generalized eigenvalue
problem �88� for given N. Order denotes the order of the truncated
matrix. �E denotes the difference EN−EN−1. The exact value is
−2.903724373 �20�.

N Order EN �E

1 10 −2.8725067

2 30 −2.8975136 −0.25 10−1

3 60 −2.9009036 −0.33 10−2

4 99 −2.9020298 −0.11 10−2

5 146 −2.9025655 −0.53 10−3

6 200 −2.9028682 −0.30 10−3

7 260 −2.9030582 −0.18 10−3

8 325 −2.9031862 −0.12 10−3

9 394 −2.9032773 −0.91 10−4

10 466 −2.9033447 −0.67 10−4

11 540 −2.9033962 −0.51 10−4

12 586 −2.9034357 −0.39 10−4

13 632 −2.9034672 −0.31 10−4

14 678 −2.9034922 −0.24 10−4

15 724 −2.9035120 −0.19 10−4

16 770 −2.9035277 −0.15 10−4

17 816 −2.9035404 −0.12 10−4

18 862 −2.9035508 −0.10 10−4

TABLE IV. The same as in Table III, but for the 23S state. The
exact value is −2.175229378 �20�.

N Order E �E

1 17 −2.174245506

2 47 −2.175088716 −0.84 10−3

3 86 −2.175208569 −0.11 10−3

4 130 −2.175221935 −0.13 10−4

5 175 −2.175225653 −0.37 10−5

6 232 −2.175227182 −0.15 10−5

7 288 −2.175227945 −0.76 10−6

8 340 −2.175228372 −0.42 10−6

9 401 −2.175228626 −0.25 10−6

10 456 −2.175228790 −0.16 10−6

11 502 −2.175228901 −0.11 10−6

12 537 −2.175228977 −0.75 10−7

13 562 −2.175229025 −0.47 10−7
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are good. Going to the higher excited states, the performance
of the orbital method further improves, see, e.g., Ref. �4�.

To improve the result achieved here it is necessary to
optimize screening constants, classify the configurations ac-
cording to the scheme proposed by Herrick and Sinanoglu
and to extrapolate the results to infinite N. This will be dis-
cussed elsewhere.

In Table VI a few values of the repulsion integrals be-
tween �1s ,2p� configuration and the excited configurations
are presented. Also presented are a few diagonal matrix ele-
ments between the highly excited configurations. These con-
figurations are the last considered configurations for given N.
The values of the integrals were calculated in the double
precision and then compared with the calculation performed
in quadruple precision. It is seen from Table VI that the
numerical stability of the method is very high. To conclude,
these preliminary results show that the algebraic method de-
veloped in this paper is sound.

VI. CONCLUSIONS

In this paper two goals were achieved. First, we have
shown that conservation of the Runge-Lenz vector and the
commutation relations between components of the Runge-
Lenz vector and angular momentum provides recurrence re-
lations for the radial functions of the hydrogen. Second, we
have shown that these recurrence relations facilitated the nu-
merical stability of calculations. In particular, the integrals
over four radial functions were written as a linear combina-
tion of the integrals over two radial functions. Numerically
stable recurrence relations for the coefficients of the linear
combination were found. The integrals over two radial func-
tions were given through numerically stable recurrence rela-
tions. The method was applied to the calculation of 1 1S,
2 3S, and 2 3P states of helium. The results obtained here are
in agreement with the other calculations.

We would like to point out that with the methods devel-
oped in this paper the treatment of the radial degrees of free-
dom is neither more complicated nor less elegant than the
treatment of the angular ones. We note that the only analyti-
cal tools used in the evaluation of the two electron integrals
�46� were the multipole expansion �47� and the integration
by parts, Eqs. �63� and �71�. In the evaluation of the one-
electron integrals we calculated analytically the integrals
over nodeless functions �B3�. The rest of the calculation was
algebraic. In fact, the calculation can be carried out in a
completely algebraic way �24�. By means of the recurrence
relations derived in Sec. III and Appendix B, we can calcu-
late the matrix r12

2 . The matrix elements of r12
−1 then can be

calculated by means of the improved Newton method for
square-root of the matrix �25�.

Algebraic method for the calculation of the atomic inte-
grals developed in this paper can be extended to the calcula-
tion of the oscillator strengths �20,26�, Bethe logarithm
�21,27� and relativistic effects �28� Since the algebraic
method for the calculation of the atomic integrals keeps the
numerical instabilities under control, it provides the possibil-
ity of further improvement of the atomic calculation in gen-
eral. Therefore, we believe that it is of some interest.

TABLE V. The same as in Table III, but for the 23P state. The
exact value is −2.133164181 �20�.

N Order E �E

1 15 −2.131319860

2 54 −2.132970321 −0.16 10−2

3 106 −2.133129547 −0.15 10−3

4 158 −2.133151474 −0.21 10−4

5 224 −2.133157958 −0.64 10−5

6 292 −2.133160583 −0.26 10−5

7 368 −2.133161872 −0.12 10−5

8 450 −2.133162588 −0.71 10−6

9 521 −2.133163013 −0.42 10−6

10 594 −2.133163291 −0.27 10−6

11 672 −2.133163480 −0.18 10−6

12 740 −2.133163610 −0.12 10−6

13 798 −2.133163699 −0.89 10−7

TABLE VI. Values of the integrals 	k�r12
−1�j� as calculated in the double precision where the states �k� and �j� are the symmetry adapted

states given by Eq. �89� for the triplet P states, i.e., for L=1 and S=1. The results were checked in quadruple precision. Error denotes the
difference between the results obtained in double and quadruple precision.

n1k l1k �1k n2k l2k �2k n1j l1j �1j n2j l2j �2j 	k�r12
−1�j� Error

1 0 1 16 1 1/2 10 7 1 9 8 1 0.900831851943034 10−4 −0.19 10−17

1 0 1 16 1 1/2 10 8 1 10 9 1 −0.2890615746201898 10−4 0.94 10−18

1 0 1 16 1 1/2 12 9 1 11 10 1 0.1831898394329932 10−4 −0.16 10−17

1 0 1 16 1 1/2 12 9 1 12 10 1 0.4890330421218360 10−4 −0.38 10−17

1 0 1 16 1 1/2 13 8 1 13 9 1 0.1977285617128401 10−3 −0.68 10−17

10 7 1 9 8 1 10 7 1 9 8 1 17.00271743870608 −0.11 10−13

10 8 1 10 9 1 10 8 1 10 9 1 19.73464697927070 0.19 10−13

12 9 1 11 10 1 12 9 1 11 10 1 21.51748282351638 −0.12 10−13

12 9 1 12 10 1 12 9 1 12 10 1 22.41407884446250 −0.20 10−14

13 8 1 13 9 1 13 8 1 13 9 1 21.84661070151542 066 10−14
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APPENDIX A

This appendix is divided into four subsections. Decompo-
sition of the operators into the radial and angular parts is
described and the algebra of the angular operators is treated.
The most important results on the angular momentum are
summarized. The selection rules and the calculation of non-
zero matrix elements of the class of the vector operators
between spherical harmonics are given. The class of the vec-
tor operators considered here is a special case of the so�3�
vector operators, see, e.g., Refs. �13,29,30�. In the exposition
of the representation theory of so�3� vector operators we pro-
ceed along the lines of the paper �13�, though some details
are different.

1. Algebra of the angular operators

Taking the dot product of n� and �n, we get from Eqs. �4�
and �6� that

nk�k
n = 0. �A1�

The ordering in the last equation is important, since compo-
nents of n� and �n do not commute. To get their commutation
relations, let us consider the well-known commutation rela-
tion �� j ,xk�=� jk and insert Eqs. �5� and �3� into � j and xk,
respectively. After simple manipulations we obtain

�� j
n,nk� = � jk − njnk. �A2�

Setting j=k, we get �recalling that Einstein summation con-
vention is used�

��k
n,nk� = 2. �A3�

Equation �A1� yields an even stronger result, namely,

�k
nnk = 2. �A4�

Further, using Eqs. �3� and �5� we obtain for the compo-
nents of the angular momentum

Lj = − i� jklxk�l = − i� jklrnk�nl
�

�r
+

�l
n

r
� = − i� jklnk�l

n.

�A5�

Here, we used the well-known theorem that the product of a
symmetric tensor and an antisymmetric tensor vanishes.
From the last equation it is immediately clear that the com-

ponents of L� depend on the angular variables only. Further,

taking the dot product of the vector operator L� with itself we
obtain

L2 = − ��n�2. �A6�

Here, we used Eqs. �A1�, �A2�, and �A4� and the identity

� jkl� jpq = �kp�lq − �kq�lp. �A7�

The expression for the Laplace operator in spherical co-
ordinates can be easily obtained from Eqs. �5�, �A1�, �A4�,
and �A6�

− �2 = pr
2 +

L2

r2 . �A8�

Also, it immediately follows that the Hamiltonian H in Eq.
�1� commutes with the square and the third component of the
angular momentum L2 and L3.

2. Angular momentum

Let us recall only some very important relations derived
in the algebraic treatment of the angular momentum. The
eigenvalues and eigenvectors of the square of angular mo-
mentum and one of its components are defined by equations

L2�l,m� = l�l + 1��l,m� �A9�

and

L3�l,m� = m�l,m� . �A10�

It is advantageous to introduce the step-up and step-down
operators L±=L1± iL2. One can show that these operators act
on the eigenstates �l ,m� as follows:

L±�l,m� = ��l � m��l + 1 ± m��l,m ± 1� . �A11�

Taking the Hermitian conjugate of this equation we obtain

	l,m�L� = 	l,m ± 1���l � m��l + 1 ± m� . �A12�

The magnetic quantum number m runs from −l to l by 1. For
orbital motion, the values of m have to be integers. Hence,
possible values of orbital quantum number l are non-negative
integers. The projections of the eigenvectors �l ,m� into the
coordinate basis are called spherical harmonics Yl,m�� ,��
= 	n� � l ,m�.

3. Selection rules

Next we show that from the commutation relations of the
vector operators n� and �n with the components of the angu-

lar momentum L� we can determine the matrix elements of
these operators between the spherical harmonics. To get the
selection rules for the quantum number l we begin by notic-
ing that the components of operator �k

n do not mutually com-
mute. To see this, we start from the commutation relation
�� j ,�k�=0 and insert the decomposition �5� into �k. Using
Eq. �A2�, we obtain after some manipulations

��k
n,� j

n� = nk� j
n − nj�k

n. �A13�

Using this equation together with Eqs. �A2� and �A6� we
derive the commutation relations

�L2,nk� = 2�nk − �k
n� �A14�

and
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�L2,�k
n� = − 2nkL

2. �A15�

The last two equations are operator identities. Multiplying
these equations from the left by 	l� ,m�� and from the right by
�l ,m� and using Eq. �A9�, we obtain after simple manipula-
tions two very important equations, namely,

	l�,m���k
n�l,m� =

2 + l�l + 1� − l��l� + 1�
2

	l�,m��nk�l,m�

�A16�

and

�l� + l + 2��l� + l��l� + 1 − l��l� − 1 − l�	l�,m��nk�l,m� = 0.

�A17�

It follows from these two equations that the matrix elements
of operators n� and �n among spherical harmonics vanish
whenever l�� l±1.

Let us now find the selection rules for the quantum num-
ber m. We start with the observation that for every vector

operator V� of the form �12� the commutation relations

�Lj,Vk� = i� jkmVm �A18�

holds. This follows from Eqs. �A2�, �A5�, and �A13�. Thus,

the operators V� given by Eq. �12�, are special cases of the
so�3� vector operators, see, e.g., �13,29,30�. It follows from
these equations that

�L3,V3� = 0 �A19�

and

�L3,V±� = ± V±, �A20�

where the usual notation

V± = V1 ± iV2 �A21�

has been used. Multiplying the last two equations by 	l�m��
from the left and by �l ,m� from the right and using Eq. �A10�
we get

	l�,m��V3�l,m� = 0,m� � m �A22�

and

	l�,m��V±�l,m� = 0,m� � m ± 1. �A23�

4. Calculation of nonzero matrix elements

The nonzero matrix elements of operator V� can be evalu-
ated by means of the commutator

�L+,V+� = 0. �A24�

This equation follows from Eq. �A18�. Further, we multiply
this equation by 	l−1,m+1� from the left and by �l ,m� from
the right. Using Eqs. �A11� and �A12� to get the action of
operator L+ on spherical harmonics, we obtain

	l − 1,m + 1�V+�l,m�
	l − 1,m + 2�V+�l,m + 1�

=� �l − m��l − m − 1�
�l − m − 1��l − m − 2�

.

�A25�

Since the numerator and denominator on both sides of this
equation differ by the substitution m→m+1, the most gen-
eral form of the matrix elements reads

	l − 1,m + 1�V+�l,m� = cl
��l − m��l − 1 − m� , �A26�

where coefficient cl is independent on m.
The matrix elements of operators V3 and V− can now eas-

ily be found. Using the last equation, the commutation rela-
tion

V3 = −
1

2
�L−,V+� �A27�

and Eqs. �A11� and �A12� we obtain the matrix element of
operator V3

	l − 1,m�V3�l,m� = cl
��l − m��l + m� . �A28�

Similarly, using the last equation, Eqs. �A11� and �A12� and
the commutation relation

V− = �L−,V3� , �A29�

we finally obtain

	l − 1,m − 1�V−�l,m� = − cl
��l + m − 1��l + m� . �A30�

The remaining nonzero matrix elements can be obtained
by assuming that operator V3 is real. Coefficient cl is then
real. Taking the Hermitian conjugate of Eqs. �A26�, �A28�,
and �A30�, we get successively

	l + 1,m − 1�V−�l,m� = cl+1
��l − m + 2��l − m + 1� ,

�A31�

	l + 1,m�V3�l,m� = cl+1
��l + 1 − m��l + 1 + m� , �A32�

and

	l + 1,m + 1�V+�l,m� = − cl+1
��l + m + 1��l + m + 2� .

�A33�

So far, we have determined dependence of the matrix el-
ements on the quantum number m. To determine coefficient
cl, we note that

�V+V− + V3
2��l,m�

= �cl
2�2l − 1��l + m� + cl+1

2 �l + 1 − m��2l + 3���l,m�

= �V2 − i�V1,V2���l,m� . �A34�

The first equality follows from Eqs. �A26�, �A28�, and
�A30�–�A33�. The second equality follows from Eq. �A21�
and the definition of V2=VkVk. Equation �A34� is an impor-
tant result and it was used in the Sec. II to determine spec-
trum of the hydrogen atom.
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APPENDIX B

In Sec. IV we showed that calculation of two-electron
integrals can be reduced to calculation of one-electron inte-
grals �76�. Algebraic calculation of the overlap integrals �76�
is described in this appendix. We first calculate integrals
�N1 ,L1 ,�1 �N2 ,L2 ,�2� for L1=L2. Knowing these integrals,
we calculate the integrals with L1�L2. Again, it is important
to calculate these integrals in a numerically stable way. The
results obtained in this subsection can also be obtained by
analytical method, see, e.g., Ref. �31�.

1. Case N2=L2+1 and L1=L2

Considering Eq. �85� for N2= l yields

PN1,l+1
l,l,l ��1,�2� =

1

�2
�N1,l,�1�l + 1,l,�2� . �B1�

Inserting this equation into Eq. �86� for N2= l+1 we obtain
the formula

�N1 + 1,l,�1�l + 1,l,�2� =
N1 + l + 1

N1 − l

�2 − �1

�2 + �1
�N1,l,�1�l + 1,l,�2� .

�B2�

This equation is solved with the initial condition

�l + 1,l,�1�l + 1,l,�2� = �22�1�2�l+1 �2l + 1�!
��1 + �2�2l+2 . �B3�

This equation is obtained by inserting Eqs. �45� and �62� into
Eq. �76�. Having established this formula we need only to
raise the quantum number N2 from the value l+1 to an arbi-
trary value and to raise the quantum number L2 from the
value l.

2. Case L1=L2

To raise the quantum number N2 from the value l+1 to an
arbitrary value we start with the “analytic” formula


0

�

r� d

dr
+

1

r
��rR̃N1,L1

��1r�R̃N2,L2
��2r��dr

= 0 = 
0

�

r
r� d

dr
+

1

r
�R̃N1,L1

��1r��R̃N2,L2
��2r�dr

+ 
0

�

r
r� d

dr
+

1

r
�R̃N2,L2

��2r��R̃N1,L1
��1r�dr .

�B4�

Applying Eq. �64� we obtain

�N1 − L1��N1 + 1,L1,�1�N2,L2,�2�

− �N1 + L1��N1 − 1,L1,�1�N2,L2,�2�

+ �N2 − L2��N1,L1,�1�N2 + 1,L2,�2�

− �N2 + L2��N1,L1,�1�N2 − 1,L2,�2� = 0. �B5�

Further, we consider expression


0

�

r2rR̃N1,L1
��1r�R̃N2,L2

��2r�dr

and let 2r act first on the function R̃N1,L1
��1r�, second on the

function R̃N2,L2
��2r�. Operator 2r acts on these functions ac-

cording to Eq. �78� as


0

�

r2rR̃N1,L1
��1r�R̃N2,L2

��2r�

=
1

�1
�2N1�N1,L1,�1�N2,L2,�2�

− �N1 − L1��N1 + 1,L1,�1�N2,L2,�2�

− �N1 + L1��N1 − 1,L1,�1�N2,L2,�2��

=
1

�2
�2N2�N1,L1,�1�N2,L2,�2� − �N2 − L2��N1,L1,�1�N2

+ 1,L2,�2� − �N2 + L2��N1,L1,�1�N2 − 1,L2,�2�� .

�B6�

Eliminating �N1+1 ,L1 ,�1 �N2 ,L2 ,�2� from one of the Eqs.
�B5� and �B6� we obtain

�N2 − L2�� 1

�1
+

1

�2
��N1,L1,�1�N2 + 1,L2,�2�

= 2�−
N1

�1
+

N2

�2
��N1,L1,�1�N2,L2,�2�

+ �N2 + L2�� 1

�1
−

1

�2
��N1,L1,�1�N2 − 1,L2,�2�

+ 2
N1 + L1

�1
�N1 − 1,L1,�1�N2,L2,�2� . �B7�

Using this equation for L1=L2= l together with Eq. �B2� we
obtain all possible integrals �N1 , l ,�1 �N2 , l ,�2�.

3. Case L1ÅL2

In general, we can assume that L1	L2, since obviously
�N1 ,L1 ,�1 �N2 ,L2 ,�2�= �N2 ,L2 ,�2 �N1 ,L1 ,�1�. We raise quan-
tum number L2 from the value L2=L1 to the needed value as
follows.

For the action of operator r� d
dr + 1

r
� on the function

R̃N2,L2
��2r� in Eq. �B4� we use Eq. �65� instead of Eq. �64�.

We obtain

�N1 − L1��N1 + 1,L1,�1�N2,L2,�2�

− �N1 + L1��N1 − 1,L1,�1�N2,L2,�2�

+ �N1,L1,�1�N2 − 1,L2 + 1,�2�

− �N1,L1,�1�N2 + 1,L2 + 1,�2�

+ 2�L2 + 1��N1,L1,�1�N2,L2,�2� = 0. �B8�

Further, for the action of operator 2r on the function

R̃N2,L2
��2r� in Eq. �B6� we use Eq. �77� instead of Eq. �78�.

We get
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1

�1
�2N1�N1,L1,�1�N2,L2,�2�

− �N1 − L1��N1 + 1,L1,�1�N2,L2,�2�

− �N1 + L1��N1 − 1,L1,�1�N2,L2,�2��

=
1

�2
�− 2�N1,L1,�1�N2,L2 + 1,�2�

+ �N1,L1,�1�N2 + 1,L2 + 1,�2�

+ �N1,L1,�1�N2 − 1,L2 + 1,�2�� . �B9�

Eliminating integrals �N1+1 ,L1 ,�1 �N2 ,L2 ,�2� from one of
the Eqs. �B8� and �B9� we obtain

2�N1 + L2 + 1��N1,L1,�1�N2,L2,�2�

= 2�N1 + L1��N1 − 1,L1,�1�N2,L2,�2�

− �1 −
�1

�2
��N1,L1,�1�N2 − 1,L2 + 1,�2�

− 2
�1

�2
�N1,L1,�1�N2,L2 + 1,�2�

+ �1 +
�1

�2
��N1,L1,�1�N2 + 1,L2 + 1,�2� . �B10�

This equation could be used for calculating the integrals
�N1 ,L1 ,�1 �N2 ,L2 ,�2� as it stands. However, it turns out that
it is more advantageous to combine the last equation with
Eq. �B7�. Elimination of the integrals �N1

−1 ,L1 ,�1 �N2 ,L2 ,�2� from one of these equations yields

�1 +
�1

�2
��N1,L1,�1�N2 + 1,L2 + 1,�2�

− 2
�1

�2
�N1,L1,�1�N2,L2 + 1,�2�

− �1 −
�1

�2
��N1,L1,�1�N2 − 1,L2 + 1,�2�

= 2�N2
�1

�2
+ L2 + 1��N1,L1,�1�N2,L2,�2�

− �N2 − L2��1 +
�1

�2
��N1,L1,�1�N2 + 1,L2,�2�

+ �N2 + L2��1 −
�1

�2
��N1,L1,�1�N2 − 1,L2,�2� .

�B11�

We run this equation starting from L2=L1 successively as-
cending the quantum number L2 to the desired value. In par-
ticular, considering the last equation for �1=�2 leads to the
equation

�N1,L1,�1�N2 + 1,L2 + 1,�1� − �N1,L1,�1�N2,L2 + 1,�1�

= �N2 + L2 + 1��N1,L1,�1�N2,L2,�1�

− �N2 − L2��N1,L1,�1�N2 + 1,L2,�1� . �B12�

Taking into account the orthogonality of the radial functions
for the same �, Eq. �44�, we get that integrals
�N1 ,L1 ,� �N2 ,L2 ,�� vanish for L1	L2 and N1�N2. The non-
zero integrals can be easily calculated from the last equation
starting with N1=N2+1 and L1=L2.

4. Generalizations

We would like to remark that the algebraic method devel-
oped so far can also be applied to the evaluation of integrals
�0

�rp+1Rn1,l1
��1r�Rn2,l2

��2r�dr, for both positive and negative
p �see also Refs. �12,32,33��. If p is positive, we use one of
Eqs. �31�, �35�, and �36� to reduce the integrals to the form
�76�. If p is negative, we consider Eq. �31�, Eq. �35� with l
replaced by l−1 and Eq. �36� with l replaced by l+1. We
eliminate Rn+1,l��r� and Rn−1,l��r� from these equations and
get

r−1Rn,l��r� =
�

l�l + 1��2l + 1�
�l��n + l + 1��n − l − 1�

�Rn,l+1��r� + �l + 1���n + l��n − l�

�Rn,l−1��r� + �2l + 1�nRn,l��r�� . �B13�

By means of this equation we reduce the integrals of the
form �0

�r−�p�+1Rn1,l1
��1r�Rn2,l2

��2r�dr to the integrals of the
form �76�.
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