NMMO401 CONTINUUM MECHANICS, WINTER SEMESTER 2020/2021 SYLLABUS

VÍT PRŮŠA

Topics/notions printed in *italics* are not a part of the exam. All other topics/notions are expected to mastered at the level of a reflex action.

- Preliminaries.
 - Linear algebra.
 - * Scalar product, vector product, mixed product, tensor product. Transposed matrix.
 - $\ast\,$ Tensors.
 - $\ast\,$ Cofactor matrix cof $\mathbb A$ and determinant det $\mathbb A.$ Geometrical interpretation.
 - * Cayley–Hamilton theorem, characteristic polynomial, eigenvectors, eigenvalues.
 - * Trace of a matrix.
 - * Invariants of a matrix and their relation to the eigenvalues and the mixed product.
 - * Properties of proper orthogonal matrices, angular velocity.
 - * Polar decomposition. Geometrical interpretation.
 - Elementary calculus.
 - $\ast\,$ Matrix functions. Exponential of a matrix.
 - * Representation theorem for scalar valued isotropic tensorial functions and tensor valued isotropic tensorial functions.
 - * Gâteaux derivative, Fréchet derivative. Derivatives of the invariants of a matrix.
 - * Operators ∇ , div and rot for scalar and vector fields. Operators div and rot for tensor fields. Abstract definitions and formulae in Cartesian coordinate system. Identities in tensor calculus.
 - Line, surface and volume integrals.
 - * Line integral of a scalar valued function $\int_{\gamma} \varphi \, \mathrm{d} X$, line integral of a vector valued function $\int_{\gamma} \boldsymbol{v} \cdot \mathrm{d} X$.
 - * Surface integral of a scalar valued function $\int_{S} \varphi \, dS$, surface integral of a vector valued function $\int_{S} \boldsymbol{v} \cdot d\boldsymbol{S}$, surface Jacobian.
 - * Volume integral, Jacobian matrix.
 - Stokes theorem and its consequences.
 - * Potential vector field, path independent integrals, curl free vector fields. Characterisation of potential vector fields.
 - * Korn equality.
 - Elementary concepts in classical physics.
 - * Newton laws.
 - * Galilean invariance, principle of relativity, non-inertial reference frame.
 - * Fictitious forces (Euler, centrifugal, Coriolis).
 - Kinematics of continuous medium.
 - Basic concepts.
 - * Notion of continuous body. Abstract body, placer, configuration.
 - * Reference and current configuration. Lagrangian and Eulerian description.
 - * Deformation/motion χ .
 - * Local and global invertibility of the motion/deformation, condition det $\mathbb{F} > 0$.
 - * Deformation gradient \mathbb{F} and its geometrical interpretation. Polar decomposition $\mathbb{F} = \mathbb{RU}$ of the deformation gradient and its geometrical interpretation.
 - * Relative deformation gradient.
 - * Deformation gradient and polar decomposition for simple shear.
 - * Displacement U.
 - * Deformation of infinitesimal line, surface a volume elements. Concept of isochoric motion.
 - * Lagrangian velocity field V, Eulerian velocity field v. Material time derivative $\frac{d}{dt}$ of Eulerian quantities.
 - * Streamlines and pathlines (trajectories).
 - * Spatial velocity gradient \mathbb{L} , its symmetric part \mathbb{D} and skew-symmetric part \mathbb{W} .
 - Strain measures.
 - * Left and right Cauchy–Green tensor, $\mathbb B$ and $\mathbb C.$ Hencky strain.
 - * Green-Saint-Venant strain tensor E, Euler-Almansi strain tensor e. Geometrical interpretation.
 - * Linearised strain \mathfrak{c} .
 - Compatibility conditions for linearised strain ε in \mathbb{R}^2 . Compatibility conditions for linearised strain ε in \mathbb{R}^3 .

- Rate quantities.
 - * Rate of change of Green–Saint-Venant strain, rate of change of Euler–Almansi strain and their relation to the symmetric part of the velocity gradient D.
 - * Rate of change of infinitesimal line, surface and volume elements. Divergence of the Eulerian velocity field and its relation to the change of volume.
 - * Objective derivatives of tensorial quantities (Oldroyd derivative, Truesdell derivative).
- Kinematics of moving surfaces.
 - * Lagrange criterion for material surfaces.
- Reynolds transport theorem.
 - $\ast\,$ Reynolds transport theorem for the volume moving with the medium.
 - * Reynolds transport theorem in the presence of surface discontinuities.
- Dynamics and thermodynamics of continuous medium.
 - Mechanics.
 - * Balance laws for continuous medium as counterparts of the classical laws of Newtonian physics of point particles.
 - * Concept of contact/surface forces. Existence of the Cauchy stress tensor \mathbb{T} (tetrahedron argument).
 - * Pure tension, pure compression, tensile stress, shear stress.
 - * Balance of mass, linear momentum and angular momentum in Eulerian description.
 - * Balance of angular momentum and its implications regarding the symmetry of the Cauchy stress tensor. Proof of the symmetry of the Cauchy stress tensor.
 - * Balance of mass, linear momentum and angular momentum in Lagrangian description.
 - * First Piola–Kirchhoff stress tensor \mathbb{T}_{R} and its relation to the Cauchy stress tensor \mathbb{T} . Piola transformation. * Formulation of boundary value problems in Eulerian and Lagrangian description, transformation of
 - traction boundary conditions from the current to the reference configuration.
 - Elementary concepts in thermodynamics of continuous medium.
 - * Specific internal energy e, energy/heat flux j_q .
 - $\ast\,$ Balance of total energy in the Eulerian and Lagrangian description.
 - * Balance of internal energy in the Eulerian and Lagrangian description.
 - * Referential heat flux J_q .
 - * Specific Helmholtz free energy, specific entropy.
 - Boundary conditions.
 - Geometrical linearisation. Incompressibility condition in the linearised setting. Specification of the boundary conditions in the linearised setting.
 - Balance laws in the presence of discontinuities.
- Simple constitutive relations.
 - Pressure and thermodynamic pressure, engineering equation of state. Derivation of compressible and incompressible Navier–Stokes fluid model via the representation theorem for tensor valued isotropic tensorial functions. Complete thermodynamical description of a compressible viscous heat conducting fluid – Navier–Stokes– Fourier equations.
 - Cauchy elastic material. Derivation via the representation theorem for tensor valued isotropic tensorial functions.
 - Green elastic material. (Hyperelastic solid.) Relation between the specific Helmholtz free energy and the Cauchy stress tensor for an elastic solid. Rate type formulation of constitutive relations for a hyperelastic solid.
 - Physical units, dimensionless quantities, Reynolds number.
- Simple problems in the mechanics of continuous medium.
 - Archimedes law.
 - Deformation of a cylinder (linearised elasticity). Hooke law.
 - Inflation of a hollow cylinder made of an incompressible isotropic elastic solid. (Comparison of the linearised elasticity theory and fully nonlinear theory.)
 - Waves in compressible Navier-Stokes fluid.
 - Waves in the linearised isotropic elastic solid.
 - Stability of the rest state of the incompressible Navier-Stokes fluid.
 - Drag acting on a rigid body moving with a uniform velocity in the incompressible Navier-Stokes fluid.
 - Pressure driven flow of incompressible Navier-Stokes fluid in a pipe of circular cross section.

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE, SOKOLOVSKÁ 83, PRAHA 8 – KARLÍN, CZ 186 75, CZECH REPUBLIC *E-mail address*: prusv@karlin.mff.cuni.cz

2