
NMR spectroscopy

• J – interaction / J – coupling 

• Splitting patterns

• Homonuclear and heteronuclear couplings

• Typical values, Karplus equation



J interaction
Indirect spin-spin interaction scalar coupling

interaction mediated by common Electrons

nucleus „feels “ spin state of nearby nuclei

• Causes fine splitting of signals

• Carries information about nearby NMR-active nuclei

• Magnitude DOES NOT DEPEND on magnetic field
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J interaction
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J-coupling in 1H spectra

Signals are split by hydrogens that are „different“
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Splitting by  n equivalent Hydrogens
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1    1 Doublet d
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J-coupling and system of splitting



J-couplings – structure of multiplets
J1 = J2 = J3
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J-couplings in hydrogen spin systems
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Karplus equation

Dependency of 3JHH on the dihedral angle

This empirical dependence of the size of the J-coupling can be used to determine 

the conformation of the molecule



Heteronuclear J-interaction

150 100 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

19.21

20.81
22.41

24.0159.65

61.25
67.99

69.59

173.07

O OCH3

CH3
OH

13C spectrum

13C H

m = -1/2

m = +1/2

13C H2
13C H3

Doublet triplet quartet
1 : 1 1 : 2 : 1 1 : 3 : 3 : 1

Spin-satets of H

No hydrogen
One hydrogen 

bound

Doublet

triplet quartet

singlet

Three 

hydrogens 

bound

Two hydrogens 

bound



H3C-CH3 H2C=CH2 C6H6 HC≡CH

1JCH
124,9 156,4 158,4 249,0

CHCl3
1H spectrum

208 Hz

• Main line – 1H bound to 12C (99%)

• Satellites – 1H bound to 13C (1%)

2JCH and  3JCH is about 8 Hz

CDCl3
13C spectrum

32 Hz

= 6.51

Heteronuclear J-interaction



2JCF = 26 Hz 3JCF = 7 Hz1JCF = 167 HzCH3 CH2F

3JHF = 24 Hz

2JHF = 47 Hz

J interaction with other nuclei:     -19F

1H spectrum

13C spectrum

𝐼 = 1/2

J-interaction with 19F is 

pronounced through many 

chemical bonds

3JHH = 7 Hz



3JPH = 8 Hz 3JHH = 7 Hz

J interaction with other nuclei : 1H-31P

1H spectrum

13C spectrum

tri ethyl phosphate
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Splitting due to phosphorus 

coincides with splittings due 

to hydrogens

𝐼 = 1/2



AX AX2

When X has spin 𝑰 = 𝟏

-1, 0, +1
1 : 1 : 1

1 : 2 : 3 : 2 : 1

possible states

CDCl3
… applies to hydrogens in NH4+ too CD2Cl2

11B (80%) : spin-3/2

-3/2, -1/2, +1/2, +3/2

Proton spectrum of +BH4

10B (20%) : spin-3

J interaction with other spins

Possible states

Possible states

Boron has two 

naturally occurring 

NMR active isotopes



Magnetic equivalence

Nuclei are magnetically equivalent if:

• have the same geometric configuration in relation to all 

other NMR active nuclei in the molecule (that is, have the 

same J-interaction)

and at the same time
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Magnetically equivalent

• are chemically equivalent

Equal configuration Different configurations

J-interaction between these 

protons is not manifested in 

the spectrum

Their J-interaction causes 

complicated splitting pattern



Order of the spectrum

 >> J

 = 0 A2

AA’

AB

AX 1st order spectrum

higher-order spectrum

"Pseudo-First Order"

Roof effect

Depends on magnitude of J-coupling and difference of chemical shifts Δ𝜈

(both in units of Hz)

(1st order perturbation theory)

• The intensities of the lines in the doublet do not 

correspond to the ratio 1:1

• Inner lines (towards the coupling  partner) have 

a higher intensity

• This can be used in the interpretation of spectra

J

Δ𝜈



Order of the spectrum
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J-coupling is 7 Hz
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• Difference of chemical shifts Δ𝜈 [Hz] grows with 

magnetic field

• J-coupling is independent of the magnetic field
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