NMR spectroscopy

- J interaction / J coupling
- Splitting patterns
- Homonuclear and heteronuclear couplings
- Typical values, Karplus equation

J interaction

Quantum view

Energy of magnetic moment in magnetic field

$$E=-ec\mu\cdotec B=-\mu_z B_0=-\gamma I_z B_0=-m\gamma\hbar B_0$$

Projection of nuclear angular momentum I_z is quantized: 2I + 1 values m = (-I), (-I + 1), ..., (I + 1), I

Spin I = 1/2

J interaction

Two nuclei with spin1/2 Magnitude of interaction: *J* [Hz]

No interaction

both transitions are equal No matter of the spin state of the second nucleus

 $H = 2\pi J \,\vec{I} \cdot \vec{S}$ **Energy contribution** $E_J = h J m_I m_S$ $m_I, m_S = \pm \frac{1}{2}$ With J-couplings $\nu_I +$ $v_{s} + \frac{1}{2}$ Levels are displaced 2 2 IS Transitions differ by the value of J v_s ν Possible states Possible states

of nucleus S

of nucleus I

J-coupling in ¹H spectra

J-coupling and system of splitting

J-coupling and system of splitting

Splitting by *n* equivalent Hydrogens

J-couplings – structure of multiplets

J-couplings in hydrogen spin systems

Karplus equation

Dependency of ${}^{3}J_{HH}$ on the dihedral angle

This empirical dependence of the size of the J-coupling can be used to determine the conformation of the molecule

Heteronuclear J-interaction

Heteronuclear J-interaction

J interaction with other nuclei : ${}^{1}H-{}^{31}P$

J interaction with other spins

Magnetic equivalence

Nuclei are magnetically equivalent if:

• are chemically equivalent

and at the same time

 have the same geometric configuration in relation to all other NMR active nuclei in the molecule (that is, have the same J-interaction)

Equal configuration

Magnetically equivalent

J-interaction between these protons is not manifested in the spectrum Different configurations

Chemically equivalent, but magnetically non-equivalent

Their J-interaction causes complicated splitting pattern

Order of the spectrum

Depends on magnitude of J-coupling and difference of chemical shifts Δv (both in units of Hz)

• This can be used in the interpretation of spectra

Order of the spectrum

J-coupling is independent of the magnetic field