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0 Mean-field approximation (MFA)

» a simple approach to many-particle interacting systems
» a reduction to an effective one-particle problem
» both for classical and quantum systems
» reliability in solid-state physics: depending on dimension
(1D - not valid, 3D - semiquantitative validity,
2D - depends on details of the model /system)

» recently extended to a dynamical mean-field theory

in this lecture:

§ justification of the MFA from a variational principle
(Peierls/Feynman/Bogolyubov inequality)

¥ MFA for the classical Ising model of magnetism



1 Peierls-Feynman inequality

e for two Hamiltonians H and H, that differ by a quantity
V = H — H, and for the corresponding free energies F and F
(at a given temperature T), the following inequality holds:

F < Fo+ (VYo = Fo+ (H— Hoo, (1)

where (...)o denotes the thermodynamic average with respect
to the unperturbed Hamiltonian H,

e practical importance of the inequality:

H is usually the Hamiltonian of a real system, i.e., it is difficult
for an exact treatment, while Hy is the Hamiltonian of a
simpler model system that can be treated exactly including an
evaluation of the r.h.s. of Eq. (1).



Ho depends on unknown parameters a; (i = 1,2,...), so that
the r.h.s. of Eq. (1) becomes a function of these parameters,

Fo + <H — H0>0 = CD({a,}) .

The values of {a;} can be found by minimization of the
function ®({a;}), which yields an approximate value of the
free energy F as a function of the temperature (and of other
parameters of the Hamiltonian H, e.g., external fields):

Fappr = I’{nl? (b({al})

i

This approximate free energy leads then to other physical
quantities (entropy, energy, specific heat, magnetization, ...).



e Proof of the inequality (for the classical case):
exp(-F) = [ expl-H)dr,

exp(—BFy) = /exp(—ﬁHo)dF,

[ Aexp(—BHp)dl
[ exp(—BHo)dll ~

where 5=1/(kgT), d =dpdq, and A= A(p,q) denotes an
arbitrary quantity. For A = exp(—/V) it yields:

(Ao

exo(—0F) = [ exo(—pHo)exp(—3V)dr
= exp(—FFo)(exp(—5V))o -

The real function V — exp(—3V) is convex,



which means that for any average (...) with positive weights,
a general relation (exp(—pV)) > exp (—5(V)) is valid.

f(x) — convex:

For the thermodynamic average (...)p, one gets

{exp(=BV))o = exp(=5(V)o)
= exp(=pF) = exp(=FFo)exp(=S(V)o),
which is equivalent to Eq. (1).

For the quantum case: R. P. Feynman: Statistical Mechanics,
or S. V. Tyablikov: Methods of Quantum Theory of Magnetism.



2 Ising model of magnetism
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magnetism: 1}, | (local spins)
binary alloys: A, B (atomic species)
a simple classical model to study:

» phase transitions

» appearance of complex orders



e the Ising Hamiltonian is defined as

H=— % ;Jm,,sms,, — zm: bmSm (2)

where m,n — lattice sites, s, € {+1,—1} — the direction
of a classical local moment (spin) at the m-th site, the
exchange integrals J,, — pair interaction of the local spins
(Joom =0, Jn = Jum), and b, — local magnetic fields
interacting with the individual local spins

e the model Hamiltonian is taken in a form

Hy = — Zamsm, (3)

where a,, denote (yet unspecified) local magnetic fields.
This Hamiltonian does not contain interaction among the
spins and it is easy to deal with.



e the quantities entering the r.h.s. of Eq. (1) are equal to

Zy = ZeXp(_BHO) = Zexp<ﬁzam5m)

{sm} {sm}
+1
=11, 2m, Zm = Z exp(Bamsm) = 2cosh(Ban),
sm=—1
Fb =-81'inz = —B_IZIn[2cosh(6am)],
<H0>0 = - Zam<5m>07
m—i_1
(smbo = z* Z smexp(Bamsm) = tanh(Ban),
sm=—1

<H>0 = - % Z Jmn<sm>0<5n>0 - Z bm<5m>0 5



where the relation (sp,s,)0 = (Sm)o{(Sa)o was used that is
valid for the non-interacting Hamiltonian Hp.

The function to be minimized [= r.h.s. of Eq. (1)] thus reads:
o({a}) = — % ; Jmn tanh(Bay,) tanh(Ba,)
— Y bntanh(Ba,) — 871 " In[2 cosh(Bap)]
+ Zamtanh(ﬁam). (4)

The usual conditions of stationarity (09 /0a; = 0) lead to
equations:



-> _ 5 tanh(Ba,) — b b

" cosh?(S3a;) ? cosh?(3a;)

| sinh(5) 8
cosh(fa;) cosh?(Ba;))

The 3rd and 4th terms on the |.h.s. cancel mutually and the
resulting equations are:

aj = b + Z.Ijntanh(ﬁa,,), (5)

— B~ f + tanh(Ba;) + &

which represents a set of coupled non-linear equations for the
set of unknown variables {a;}.



e with abbreviation 5, = (s,)o, the previous equations are
usually recast as

§j — tanh(ﬂaj), aj = bj + ijngna (6)

which has a clear physical interpretation:

the average value of the spin on a given site is given by the
effective field (*) which is equal to the sum of the applied
(external) field (**) and a term depending on the average
moments on the surrounding sites, the so-called Weiss
(molecular) field (***)

€ the equations (5, 6) define the mean-field approximation
(MFA) to the original Ising Hamiltonian

¥ MFA for alloys: Bragg-Williams approximation



e a note to the meaning of 5, = (s,)o [ = tanh(Ba,) |:
the Ising Hamiltonian H, Eq. (2), leads to exact relations

oH _ <>__8F
ob, " = T b,

Within the MFA, the exact free energy F is replaced by
Frmra = ming,y ®({a;}), which leads to

N 8FMFA N oo an
R T Z da; b,

= 5n>0

(*)

= Spn,

where the term (*) corresponds to the explicit dependence of

®({a;}) on the b, and where the condition of stationarity

(0®/0aj = 0) was employed.

This means that the quantity (s,)o =3, can really be identified

with the MFA-average of the n-th spin.



e a note to the value of (s,s,) within the MFA:

in a complete analogy (by taking partial derivatives with
respect to the exchange integrals J,,,), one can prove
for m+# n that

(SmSn)mra = (Sm)o(Sn)o = SmSn, (7)

which means that correlations between two different spins are
neglected within the MFA

e a note on magnitudes of the molecular fields:

for typical magnets based on 3d transition metals (Mn, Fe,
Co, Ni), the Weiss molecular fields can be ~ 100 T, i.e., much
stronger than usual applied fields (not exceeding ~ 10 T)



3 Ferromagnetism

e let us consider a simple (Bravais) lattice with all sites
equivalent and let us abbreviate

bm=b, am=a, (smo=5 > Jm=J,

then the MFA equations (5, 6) reduce to
s=tanh(fa), a=b+J5, 35=tanh[f(b+T5)]. (8)

For a ferromagnet, most of the pair interactions J,,, are
non-negative and we assume 7 > 0.

e solution to Eq. (8) == the average spin 5 as a function
of the temperature T and the external field b: 5 =5(T,b)
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The solution 5 =35(T,b) of Eq. (8) vs. a dimensionless
temperature (kgT/J) and a dimensionless field (b/J)

[for b <0 oneemploys 5(T,b)=—5(T,—b)].



o J/ksg = Tc is the Curie temperature

5(T,b) for fixed b: 5(T,b) for fixed T:
....... T < TC
5 --=-=- b>0 s = T =T¢
— =0 - T>Tc
1_
\
\3
N\
\\
0 —
0 Tc T
5(T,0) — spontaneous 5(T¢, b) — critical

magnetization isotherm



3.1 Solution for high temperatures

e for small external fields, b — 0, and high temperatures T,
Eq. (8) has a unique solution that follows from tanh(x) ~ x
for |x] < 1:

_ _ _ £b b
This can be written in a form of the Curie-Weiss law
_ 1 C
s(T,b)=x(T)b, x(T) (10)

T keT—-J  T—Tc
where x(T) denotes the susceptibility, C = 1/kg, and
Tc = J/ks (11)

is the Curie temperature in the MFA.



e the experimentally found susceptibilities for T — T/ follow
a relation (critical behavior):

X(T) ~(T=Tc), (12)

where v is one of the so-called critical exponents;

the value of v =1, Eq. (10), is typical for the MFA while
experimental values for ferromagnetic metals (Fe, Co, Ni, Gd)
lie in the range 1.2 <~y < 1.33

1/X /,




3.2 Solution for low temperatures

e for low temperatures (T < T¢, BJ > 1), a non-zero
solution 5 exists even for vanishing external field (b = 0):

5 = tanh(5J5), (13)
which defines the spontaneous magnetization
3.2.1 Temperatures near the Curie temperature
e for T — T, the non-trivial solution 5 — 0 and one can use

tanh(x) &~ x — :x* for [x| < 1 in Eq. (13), which yields:

5(T) ~ (Tc—T)2, (14)

whereas the critical behavior encountered in experiment and in
more sophisticated theories is



5(T) ~ (Te=T), (15)

where (3 [to be distinguished from 8 = 1/(kg T) !] is another
critical exponent; its MFA value [ =1/2 exceeds measured
values around [ =~ 0.35




e a comparison of MFA with more sophisticated approaches
(for 1st nearest-neighbor pair interactions J,,,):

» 1D - exact treatment simple = no phase transition
» 2D - exact treatment possible (L. Onsager)
» 3D - Monte Carlo simulations

system Tc/TYA 3
1D chain - -
2D square lattice 0.567 0.125
3D sc lattice 0.752 0.326
3D fcc lattice 0.816 0.326

9§ MFA overestimates both T¢ and 3 (BMM =0.5)



3.2.2 Temperatures close to zero

e for T — 0T, the non-trivial solution § — 1, and one can
employ tanh(x) ~ 1 —2exp(—2x) for x > 1 in Eq. (13),
which yields:

S(T) = 1—2exp(— /i—jr) , (16)

i.e., the finite temperature T > 0 causes a very slow initial
decrease from the saturated value 5=1 at T =0

e interpretation of Eq. (16):

local spin reversals (s, = +1 — s, = —1)
accompanied by an energy increase 27

[with the Boltzmann probability exp(—527)]



e experiment (for cubic ferromagnets Fe and Ni) yields
a faster decrease: 35(T)=1— AT%? — the Bloch 3/2-law

e origin of the Bloch law: Heisenberg model (instead of Ising),
collective excitations (magnons), quantum statistics

5

1 " ‘-.T'T.\\ M FA
exp.’

0 :



3.2.3 Susceptibility

e the (differential) susceptibility in presence of spontaneous
non-zero magnetization is defined as

(- ag(Téiz 0)
and the partial derivative of 5= tanh[3(b+ J5)] leads to
B+ Ix) _ B
T wsh?(875) N cosh®(BJ5) — BT
WT) ~ k;LT exp(— /i—jr) for T — 0",
WT) ~ ! for T T2 (17)
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3.3 Ciritical isotherm

e for T = T¢ and for small external fields, b — 0T,
the value of S is obtained by solving 5 = tanh[3(b + J3)]

with the use of tanh(x) &~ x — x* for |x| < 1;

with Bc = (kgTc)™ =T we get:

1 3p\ 2
0 = fBcb— g(ﬁcb—|—§)3, 5(b) = (7) . (18)

This is another example of the critical behavior, namely
5(b) ~ b'°, (19)

where the critical exponent § = 3 in the MFA
while its measured values lie around ¢ =~ 4.



e the critical behavior in the MFA, Egs. (10, 14, 17, 18),
differs quantitatively from experimental behavior;

however, both the measured and the MFA critical exponents
(B=1/2, y=1, ¢ =3) satisfy a rule

Y
/B )

that follows from a ‘scaling law’ Ansatz

§=1+ (20)



3.4 Energy, entropy, and specific heat

e the function to be minimized, Eq. (4), per one site of the
ferromagnet is

di(a) = —%tanh2(ﬁa) — btanh(Ba)
— kg T In[2cosh(Ba)] + atanh(Ba)  (21)

e by employing the relation 5 = tanh(f3a), one can prove

1 1 _
a—25| +s cosh(ﬁa):(1—§2) 1/2,
which can be substituted into ®;(a), Eq. (21).
This leads to the MFA-free energy per one site as a function of
temperature and external field:



252

Fl(T,b)=—2 — bs
1+5s 145 1-5 1-5
—i—kBT( > In > + 5 In 5 ), (22)

where 5 depends implicitly on T and b due to the
condition of stationarity: § = tanh[3(b+ J3)].

e the internal energy per one site can be obtained from the

average of the Hamiltonian H, Egq. (2), with the neglect of
correlations in the MFA, Eq. (7) [ (SmSn) & SmS» |:

J
2

U(T,b) = — < 35% — b5 (23)



e the entropy per one site is now given by (F; = U; — TS;):

145, 145 1-5 1-5
Sl(T,b)_—kB< =i i ) (24)

which has a clear interpretation in terms of two probabilities
p+ = (1£5)/2 corresponding to the average spin 5

e the specific heat per one site (at a constant field b) equals

_2 -

G(T.b) = —57 2 0T oT

e at zero field (b = 0) and for temperatures above the T¢:
5=0 = 51(T,0) = kB In2, Ul(T,O) =0, Cl(T,O) =0;



for temperatures slightly below the T¢:

§2N(Tc— T) — Fl(T,O), Ul(T,O), 51(T,0) are
continuous at T = T¢, whereas the specific heat G (T,0)
exhibits a discontinuity:

— MFA  ——-exp.
3
im G(T.0) = > kg, ;
T—I>TC_ i ) 2°F C ;
I.
im C(T,0) =0, (26) i

4
T—T¢

= the phase transition
is of the second order

e experiment: 'lambda’ point 0 Tc T



3.5 MFA and the Landau theory of phase transitions

e the Landau theory of the 2nd-order phase transitions is
based on a phenomenological free energy as a function of the
order parameter 5 in the form of a 4th-degree polynomial:

Vi(3) = ¢(T) — b5 + (T — Tc)s* + a3, (27)

where: ¢(T) — free energy of the paramagnetic phase,
C», €4 — positive constants, T — temperature,
b — external field, T — the Curie temperature

» term —bS = magnetic field X magnetic moment

» terms ()52 + ()5* — reflect the symmetry 5+« —5

e the equilibrium value of 5 =35(T,b): from minimization
of W,(5) with respect to 5 (performed at fixed T and b)
e validity only near the critical point (T — T¢, b — 0)



e the MFA provides a similar function (defined for |5 < 1):
a in ®y(a), Eq. (21), is replaced by 5= tanh(fa), Eq. (8),
which yields [see also Eq. (22)]:

\UMFA(E):—§§2—b§
1+5, 145 1-5 1-3
ke T |
+B<2n2+2|n2)(28)

e the functions W, (5) and Wpra(S) are very similar (for
|5| < 1); a comparison of their Taylor expansions (around
5=0)yields 2c; = kg and 12¢4 = kgTc =T —
» quantitative agreement between the MFA

and the Landau theory in the critical region

» identical critical exponents (3, ,d) in both approaches



The functions W, (5) and Wpea(3)
in absence of external magnetic field (b = 0)
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e the equilibrium value of 5 follows from Eq. (27),

oV, (3)
05

which can be recast as

2 = 2C2(T — Tc) + 4C4§2

0

and depicted by means
of the Arrott plot
(isotherms — straight lines)

0

=0 = b=2c(T-Tc)5+ 4a3®, (29)

T<T(: T:TC




3.6 Critical behavior

e the condition for 5 in the Landau theory, Eq. (29), can also
be rewritten with definition of t =|T — T¢| as

(bt‘3/2) — 42¢, (§t‘1/2) + 4¢ (Et—1/2)3, (30)

where the + (—) signrefersto T > T¢c (T < T¢);

— 5t~/2 ('rescaled magnetization') depends only on
bt=3/2 ('rescaled field') and on the sign of T — T¢

e in experiment (and more sophisticated theories) and near the
critical point, one finds similarly (3,6 — critical exponents)
stF = f (bt™7), (31)

so that the full dependence 5 =35(T,b) reduces
to two functions f. of a single variable
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(k values — slopes of the asymptotic straight lines)



4 Complex magnetic orders

e simple structures can exhibit complex magnetic orders (at
low temperatures) featured by a reciprocal-space vector ko
= a real-space structure with period A = 27/|ko| often
incommensurate with the underlying lattice parameters

e examples on bcc lattice: /? /@

» Fe: ferromagnet,
trivial ko = (0,0, 0)

» Cr: spin density wave,
ko = (27/a)(0.952,0,0)

» Eu: spin spiral, /Q____;';.____
ko = (27/a)(0.27,0,0) > =




e tendency to formation of non-ferromagnetic orders can be
understood from the MFA conditions, Eq. (5),

§m = tanh [6 (bm + ZJmn§n>] )

applied to a simple (Bravais) lattice but without an
assumption of equivalence of the quantities b,, and s, for
different lattice sites

e in the limit of high temperatures T and small applied fields
b, these conditions reduce to a set of linear equations

§m - 5bm + 5Z~jmn§na (32)

where the spins s, at all lattices sites are mutually coupled



e since Jnn = Jim—npo due to the translational invariance of

the Bravais lattice, Eq. (32) is of a convolution type =—
it can be solved using the lattice Fourier transformation:

3(k) = > exp(ik-Tp)5m,

m

bk) = > exp(ik-Tp)bm,
J(k) = Zexp(ik-Tm)Jmm (33)

where k — a vector from the 1st Brillouin zone (BZ),
T,, — the m-th translational vector
(the vector of lattice site m)



e (a technical note)

» the standard Fourier transformation in 1D and its inverse
are defined by

“+oo

flk) = /_ exp(ikx) f(x) dx,

Y ~
) = o /_  expl—kx) F(K) dk
» the convolution h = f x g of two functions is defined by
+o0o
) = [ Fx-pely)dy

and it holds:  h(k) = f(k)g(k)



e the original set of coupled relations, Eq. (32), is transformed
into separate relations involving only a single k vector:

3(k) = pBbk) + pl(k)i(k) =
S T) — Wk TB(K), <(k; T) !

" ke T — J(K) (34)

e the divergence of the solution 3(k; T), Eq. (34), leads to a
critical temperature T, given in the MFA as

ks T, = max J(k) = J(ko), (35)

keBZ

where ko — the vector of the (complex) magnetic structure:
> ferromagnetism for ko =0 [J(0) =3 Jno=JT ]
» ko # 0 requires some pair interactions negative (Jn, < 0)



e example: 1-dimensional lattice with lattice parameter a,
its Ist BZis —n/a<k<m/a

| kg =0
ferromagnet

A ko = 7T/a
antiferromagnet

p S

® 0<ky<m/a
complex order
A= 27T/k0




5 Non-local susceptibility and spin-spin correlation
functions

e in the paramagnetic state (T > T,), the linear relation
between the small applied fields b,, and the resulting small
values of 5, can be written quite generally as

§m(T) — Z an(T) bna (36)
where the non-local susceptibilities x,,(T) are defined as

an(T) = %An{bj}) . ) (37)

where the partial derivative is taken at all fields null, b; = 0.
The meaning of Xxm,(T) is obvious: it reflects the effect of a
local field at site n on the average value of the spin at site m.



e for Bravais lattices, the susceptibilites m,(T) are
translationally invariant; their lattice Fourier transformation

Rk T) = exp(ik - Tom) xmo(T)
is given in the MFA according to Eq. (34) by

Wk T) = [kBT — J(k)}_1 . (38)

The values of xmn(T) can be obtained from the inverse
lattice Fourier transformation

1

XmO( T) = Q—BZ

/BZ exp(—ik - Tp) X(k; T) d’k, (39)

where the integration is taken over the 1st BZ, the volume of
which is QBZ-



e the spin-spin correlation functions are defined as averages
(SmSn) taken at temperature T (T > T,) and at all fields
null, =0 ( = 5, =0 for all sites)

e in the MFA, the spin-spin correlation functions for different
sites (m # n) reduce to zero, see Eq. (7)

e however, a general exact relation of the classical Boltzmann
statistics (between the susceptibility and the correlation of
fluctuations) allows one to express

(SmSa)(T) = kg T Xmn(T), (40)

which thus yields non-trivial correlation functions even in the
MFA



e for a ferromagnet, the maximum value of Y(k; T)
{=1[ksT — J(k)]' } occursat k=0 since

Jk) =T —Dk®> for k=1|k|—0, (41)

where J = J(0) = kg T¢ and where the D (D > 0)is a
spin-wave stiffness constant (for simplicity, we assume cubic
lattices only). Consequently, the ¥(k; T) reduces to

LTy Dt
X(k, T) = W fOI' k — 0, (42)

where the so-called correlation length &£(T) is defined by

D
{(T) = \/m' (43)



e by extending the validity of Eq. (42)
{X(k; T) ~[E2(T)+ k>t } to all values of k
and by integrating over the whole reciprocal space in the

inverse lattice Fourier transformation, Eq. (39),
we get the MFA spin-spin correlation functions as

(Smsn)(T) ~ dimn exp {— ;(I"’T")] : (44)

where the d,,, = |T, — T,| denotes the intersite distance.
The relations described by Eq. (42) and Eq. (44) are called the
Ornstein-Zernike behavior.

e the meaning of Eq. (44) is obvious: the spin-spin
correlations are negligible for very distant sites [dm, > £(T)],
but they are appreciable for nearby sites [dpn, < &(T)]



e the divergence of the correlation length for T — T/ given
by Eq. (43) represents a special case of the critical behavior

§T) ~(T-Tc)™" (45)

with the MFA critical exponent v =1/2, whereas more
accurate theories yield values v ~ 0.7 (confirmed by
experiments as well)

e this divergence is a characteristic feature of the phase
transition; it corresponds to presence of big clusters [domains
of size & £(T)] of spins pointing in the same direction



6 Properties of the MFA

e the MFA is qualitatively or semi-quantitatively correct in a
number of cases; nevertheless, it exhibits several shortcomings:

» it yields a phase transition in any dimension

» for temperatures near the critical point: incorrect critical
exponents

» for high temperatures: complete neglect of the magnetic
short-range order ((s,Sn)mra = 0)

» for low temperatures: a too slow reduction of magnetization
with increasing temperature, Eq. (16), whereas experiment
gives the Bloch law: $%(0) — s2(T) ~ T3/2



» the last shortcoming cannot be removed (within the MFA):

§ the classical Heisenberg model yields:
s? = L(Ba), a=b+Js?,

where L£(x) = coth(x) — x~! — the Langevin function;
= a very fast reduction: s7(0) —s*(T)~ T

§ the quantum Heisenberg model yields:
sz = Bs(pa), a=b+Js?,

where Bs(x) — the Brillouin function for the quantum
atomic spin S (integer or half-integer);
= a similar slow reduction as in Eq. (16)



