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0 Statistical physics

◮ macroscopic systems with a large number of (interacting)
particles

◮ both classical and quantum systems

◮ properties and quantities relevant for experiment

◮ systems under time-independent external conditions
(equilibrium properties)

◮ systems under (well-defined) time-dependent perturbations
(nonequilibrium properties)

• in this course:
focus on theoretical techniques and condensed systems



1 Thermodynamic equilibrium, classical phase space

and distribution functions

1.1 Thermodynamic equilibrium and time averages

• the state of a classical N-particle system is represented by a
point (p, q) = ({pi}3Ni=1, {qi}3Ni=1) in the 6N-dimensional phase
space

• dynamics of the system is given by the Hamiltonian H(p, q)
(time-independent) and the equations of motion

dpi(t)

dt
= − ∂H(p, q)

∂qi
,

dqi(t)

dt
=

∂H(p, q)

∂pi
(1)

• their solution for specified initial conditions yields the
trajectory (p(t), q(t)) in the phase space



• for any observable quantity A = A(p, q), one can then define
its time average Ā as

Ā = lim
τ→∞

1

τ

∫ τ

0

A(p(t), q(t)) dt (2)

• for interacting many-particle systems:
the time averages do not depend on the initial conditions

• assessment of the dependence of these time averages on the
parameters (ξ) of the Hamiltonian represents one of the
central problems of equilibrium statistical physics

H = H(p, q; ξ) =⇒ Ā = Ā(ξ)



1.2 Distribution functions and statistical averages

• the time averages can be replaced by statistical averages
defined as

〈A〉 ≡ Ā =

∫

A(p, q) ρ(p, q) dΓ, dΓ =
3N
∏

i=1

dpi dqi , (3)

where ρ(p, q) is the distribution function

• according to a general theory, the distribution function
should be a function of the Hamiltonian only,

ρ(p, q) = ϕ(H(p, q)) , (4)

where the function ϕ has to be specified



1.3 Microcanonical distribution and ergodicity

• for an isolated system with a prescribed total energy E , the
microcanonical distribution is defined as

ρ(p, q;E ) ∼ δ(H(p, q)− E ) , (5)

which yields the statistical averages as functions of the total
energy E (and of the other parameters ξ of the Hamiltonian):

〈A〉(E ) ≡ Ā(E ) =

∫

A(p, q) δ(H(p, q)− E ) dΓ
∫

δ(H(p, q)− E ) dΓ
(6)

• the microcanonical distribution, Eq. (5), can be justified by
the so-called ergodic hypothesis: each trajectory of the system
scans the whole isoenergetic surface H(p, q) = E



2 Classical canonical distribution

2.1 Canonical distribution and partition function

• for a system with thermal contact with its surroundings at
temperature T , the canonical distribution function
(Boltzmann statistics) is appropriate, namely,

ρ(p, q;T ) ∼ exp[−βH(p, q)] , β =
1

kBT
, (7)

where kB is the Boltzmann constant.
Here, we assume a fixed number of particles (N = const).

• the value of kB: 1 eV ≈ 11600 K



• the simplest consequence is the Maxwell-Boltzmann
distribution of velocities (or momenta) of individual particles
(of mass m) in a gas (or a liquid or a solid):

w(px) ∼ exp

(

− p2
x

2mkBT

)

0 px

w



• the normalized canonical distribution (
∫

ρ dΓ = 1) requires
knowledge of the partition function (’Zustandssumme’)

Z (T ) =

∫

exp[−βH(p, q)] dΓ , (8)

which yields

ρ(p, q;T ) =
1

Z (T )
exp[−βH(p, q)] (9)

and general temperature-dependent statistical averages

Ā(T ) =
1

Z (T )

∫

A(p, q) exp[−βH(p, q)] dΓ , (10)

including, e.g., the internal energy of the system (for A = H)

U(T ) = H̄(T ) = − ∂

∂β
ln[Z (T )] (11)



2.2 Free energy and its derivatives

• the partition function can also be used to calculate the free
energy F (T ):

Z (T ) = exp[−βF (T )], F (T ) = −kBT ln[Z (T )], (12)

from which various expressions for the entropy follow, namely,

S(T ) = − ∂F (T )

∂T
, (13)

S(T ) = −kB

∫

ρ(p, q;T ) ln[ρ(p, q;T )] dΓ (14)

[analogy to the mathematical entropy σ = −
∑

n
wn ln(wn)

related to probabilities wn ≥ 0 such that
∑

n
wn = 1 ]



• U(T ), F (T ), and S(T ) satisfy the Helmholtz relation

U(T ) = F (T ) + TS(T ) (15)

and their derivatives define the heat capacity (specific heat)

C (T ) =
∂U(T )

∂T
= T

∂S(T )

∂T
= −T

∂2F (T )

∂T 2
(16)

• classical equipartition theorem =⇒ heat capacity for

◮ ideal gases: C (T ) = (3/2)NkB
◮ solids (in harmonic approximation): C (T ) = 3NkB

(the Dulong-Petit law)



• for an external parameter ξ entering the Hamiltonian,
H = H(p, q; ξ) =⇒ F = F (T ; ξ), and one can prove

〈

∂H(ξ)

∂ξ

〉

(T ) =
∂F (T ; ξ)

∂ξ
(17)

• for a special (linear) ξ-dependence of H, i.e.,

H(p, q; ξ) = H0(p, q) + ξB(p, q) , ξ → 0 , (18)

where the second term defines a small perturbation added to
the unperturbed Hamiltonian H0, we get

〈B〉0(T ) = ∂F (T ; ξ = 0)/∂ξ , (19)

where 〈. . . 〉0 – average with the unperturbed Hamiltonian H0



• for a system in an applied magnetic field b:
the perturbed Hamiltonian is

H(b) = H0 − bM ,

where M is the total magnetic moment;
its value in zero field is (B ≡ −M , ξ ≡ b → 0):

M0(T ) = − ∂F (T ; b = 0)

∂b



2.3 Linear response and fluctuations

• the standard measure of fluctuations of a random real
quantity A around its average value Ā = 〈A〉 is defined as

(∆A)2 =
〈

(

A− Ā
)2
〉

= A2 − (Ā)2 , (20)

(∆A)2 – scatter of the quantity A,
√

(∆A)2 – root-mean-square (r.m.s.) deviation

• for the canonical distribution and A = H, one can prove

(∆H)2(T ) = kBT
2 C (T ) , (21)

where C (T ) is the heat capacity; this is a direct relation
between a macroscopic quantity C and a microscopic feature
of the system (∆H)2 (energy fluctuations around U = H̄)



• if we consider dependence of the quantities on the system
size (number of particles N), we find U(T ) = H̄(T ) and C (T )
proportional to N (extensive quantities), which yields

√

(∆H)2

H̄
∝ 1√

N
,

i.e., the energy fluctuations in large systems (N → ∞)
are negligible as compared to the internal energy
(canonical distribution ∼ microcanonical distribution)

H̄ energy



• similarly, for correlation of fluctuations of two random
quantities A and B (with respect to their average values Ā
and B̄), we introduce the quantity

〈(

A− Ā
) (

B − B̄
)〉

= AB − ĀB̄ (22)

• let us consider a perturbation B added to the Hamiltonian
H0 according to Eq. (18) [H(ξ) = H0 + ξB , ξ → 0]; this
perturbation induces a change in the statistical average of an
observable A and it leads to the following linear-response
coefficient

κAB(T ) =
∂Ā(T ; ξ = 0)

∂ξ
, (23)

the so-called isothermic susceptibility



• one can prove the relation

κAB(T ) = −β
〈(

A− Ā
) (

B − B̄
)〉

0
(T )

= −β [〈AB〉0 − 〈A〉0 〈B〉0] (T ) , (24)

where all averages on the r.h.s. are taken in the unperturbed
system

• this relation connects the linear-response coefficient κAB(T )
(a macroscopic property) with the correlation of fluctuations
in the unperturbed system (a microscopic quantity)



• a special form of Eq. (24) for B = −A yields

κA,−A(T ) = β (∆A)20(T ) = β
[

〈A2〉0 − 〈A〉20
]

(T ) , (25)

which explains, e.g., the Curie law for magnetic susceptibilities
at low temperatures: κ(T ) ∼ T−1

0
0

κ

T



3 Elementary quantum statistics

3.1 Quantum-mechanical and statistical averaging

• basic statements of the quantum theory:

◮ the pure state of a quantum-mechanical system is defined
by a state vector |Ψ〉 in the Hilbert space

◮ a real physical observable is represented by a Hermitian
operator A

◮ the quantum-mechanical average of the quantity (operator)
A in the state |Ψ〉 is given by

Ā{Ψ} = 〈Ψ|A|Ψ〉 , (26)

where we assume the state vector normalized to unity,
〈Ψ|Ψ〉 = 1



• if the system can be prepared in several states |Ψi〉
with probabilities pi (i = 1, 2, . . . ; pi ≥ 0,

∑

i
pi = 1),

the quantum-mechanical and statistical average is given by

〈A〉 = Ā =
∑

i

pi 〈Ψi |A|Ψi〉 =
∑

i

pi Tr {A|Ψi〉〈Ψi |}

= Tr

{

A

[

∑

i

pi |Ψi〉〈Ψi |
]}

= Tr(Aρ) , (27)

where Tr denotes the trace and where we introduced the
density matrix (statistical operator) ρ given by

ρ =
∑

i

|Ψi〉 pi 〈Ψi | , (28)

which is a positive-definite Hermitian operator



• (two technical notes)

◮ within the Dirac formalism, a ket-vector |φ〉 and
a bra-vector 〈χ| define a linear operator |φ〉〈χ|;
its action is given by |ψ〉 7→ |φ〉〈χ|ψ〉;
its trace equals the scalar product of both vectors:

Tr (|φ〉〈χ|) = 〈χ|φ〉
◮ for any operators X and Y : Tr(XY ) = Tr(YX )

• the density matrix satisfies relations

Tr(ρ) = 1 , Tr(ρ2) ≤ 1 , (29)

where the former one is a direct consequence of 〈Ψi |Ψi〉 = 1
and

∑

i
pi = 1; the equality sign in the latter relation is

encountered only for pure states



3.2 Canonical distribution and partition function

• the canonical distribution (Boltzmann statistics) for a system
with Hamiltonian H and at temperature T is defined as

ρ(T ) =
1

Z (T )
exp(−βH) , (30)

where the partition function Z (T ) is given by

Z (T ) = Tr[exp(−βH)] (31)

• if the eigenvalues and normalized eigenvectors of H are
denoted by En and |n〉 (n = 1, 2, . . . ), we get for Z (T )

Z (T ) =
∑

n

exp(−βEn) , (32)



for the density matrix ρ and its matrix elements ρmn

ρ(T ) =
∑

n

|n〉wn(T ) 〈n| , wn(T ) =
exp(−βEn)

Z (T )
,

ρmn(T ) = 〈m|ρ(T )|n〉 = wn(T ) δmn , (33)

and for the general quantum-mechanical and statistical
average (with matrix elements Amn = 〈m|A|n〉)

〈A〉(T ) = Ā(T ) = Tr[Aρ(T )] =
∑

n

wn(T ) 〈n|A|n〉

=
∑

n

wn(T )Ann =
1

Z (T )

∑

n

exp(−βEn)Ann , (34)

which has the form of Eq. (27) [ Ā =
∑

i
pi〈Ψi |A|Ψi〉 ]



• (a technical note)
if we know all eigenvalues En (n = 1, 2, . . . ) and normalized
eigenvectors |n〉 of the Hamiltonian H, we can write its
spectral representation

H =
∑

n

En |n〉〈n| =
∑

n

|n〉En 〈n| ;

this representation enables one to extend an arbitrary function
f (.) of a real variable to the same function of the operator H:

f (H) =
∑

n

f (En) |n〉〈n| =
∑

n

|n〉 f (En) 〈n| ;

this definition can be used, e.g., for f (H) = exp(−βH)



3.3 Free energy and its derivatives

• from the partition function Z (T ), the internal energy U(T ),
the free energy F (T ), the entropy S(T ), and the heat
capacity C (T ) can be obtained in the same way as in the
classical case; this leads, e.g., to expressions

S(T ) = −kB Tr{ρ(T ) ln[ρ(T )]}

= −kB
∑

n

wn(T ) ln[wn(T )] (35)

• the relations involving derivatives with respect to an external
parameter ξ of the Hamiltonian H(ξ) require more effort in
the quantum case, since the operators H(ξ) and ∂H(ξ)/∂ξ
do not commute in general



• it can be proved that [the quantum version of Eq. (17)]

〈

∂H(ξ)

∂ξ

〉

(T ) =
∂F (T ; ξ)

∂ξ
,

while in the special case of a linear ξ-dependence

H(ξ) = H0 + ξB , ξ → 0 , (36)

we get [the quantum version of Eq. (19)]

〈B〉0(T ) =
∂F (T ; ξ = 0)

∂ξ



• for the proof, we define u(β, ξ) = exp[−βH(ξ)], for which we
get (the Bloch equation):

∂u(β, ξ)

∂β
+ H(ξ) u(β, ξ) = 0 , u(0, ξ) = 1 , (37)

and for v(β, ξ) = ∂u(β, ξ)/∂ξ, we get:

∂v(β, ξ)

∂β
+ H(ξ) v(β, ξ) = − ∂H(ξ)

∂ξ
u(β, ξ) , v(0, ξ) = 0 . (38)

The last equation can be solved with an Ansatz

v(β, ξ) = u(β, ξ) c(β, ξ) = exp[−βH(ξ)] c(β, ξ)

and with initial condition c(β, ξ) = 0:

exp[−βH(ξ)]
∂c(β, ξ)

∂β
= − ∂H(ξ)

∂ξ
exp[−βH(ξ)] ,



c(β, ξ) = −
∫ β

0
exp[αH(ξ)]

∂H(ξ)

∂ξ
exp[−αH(ξ)]dα ,

v(β, ξ) = − exp[−βH(ξ)]

×
∫ β

0
exp[αH(ξ)]

∂H(ξ)

∂ξ
exp[−αH(ξ)]dα . (39)

From this result, we get:

− ∂Z (T , ξ)

∂ξ
= − ∂

∂ξ
Tr[u(β, ξ)] = −Tr[v(β, ξ)]

= Tr

{

exp[−βH(ξ)]

×
∫ β

0
exp[αH(ξ)]

∂H(ξ)

∂ξ
exp[−αH(ξ)]dα

}



=

∫ β

0
Tr

{

exp[(α − β)H(ξ)]
∂H(ξ)

∂ξ
exp[−αH(ξ)]

}

dα

=

∫ β

0
Tr

{

exp[−βH(ξ)]
∂H(ξ)

∂ξ

}

dα

= βTr

{

exp[−βH(ξ)]
∂H(ξ)

∂ξ

}

= β Z (T , ξ)

〈

∂H(ξ)

∂ξ

〉

(T ) . (40)

This means

− ∂Z (T , ξ)

∂ξ
= β Z (T , ξ)

〈

∂H(ξ)

∂ξ

〉

(T ) ,

from which the quantum version of Eq. (17) follows immediately.



3.4 Linear response and fluctuations

• the quantum version of the relation between the energy
fluctuation (∆H)2(T ) and the heat capacity C (T ) is the same
as in the classical case, Eq. (21):

(∆H)2(T ) = kBT
2 C (T )

• for a perturbation B added to the Hamiltonian H0

[ H(ξ) = H0 + ξB , ξ → 0 ], the linear response of an
observable A leads to the susceptibility defined by Eq. (23):

κAB(T ) =
∂Ā(T ; ξ = 0)

∂ξ



• the result can be written using the eigenvectors |n〉
and eigenvalues En of the Hamiltonian H0

and with Amn = 〈m|A|n〉, Bnm = 〈n|B |m〉 as

κAB(T ) =
∑

mn

AmnBnm

wm(T )− wn(T )

Em − En

+ β 〈A〉0(T ) 〈B〉0(T ) , (41)

where in the first term, one has to use (L’Hospital’s rule)

wm(T )− wn(T )

Em − En

= −βwm(T ) for Em = En . (42)

This proves the importance of the ground-state degeneracy for
the Curie-like behavior of the low-temperature susceptibility
[ κ(T ) ∼ T−1 ]



• (an example) for a 2-dimensional Hilbert space, we take
H0 = ∆σz with a real constant ∆, and A = −B = σx , where

σx =

(

0 1
1 0

)

, σz =

(

1 0
0 −1

)

;

we get

κ(T ) =

{

tanh(β∆)/∆ for ∆ 6= 0
β for ∆ = 0

0
0

κ

T

∆ = 0

∆ 6= 0



• the proof of Eq. (41) starts from

Ā(T ; ξ) = Z
−1(T , ξ)Tr {A exp[−β(H0 + ξB)]} ,

Z (T , ξ) = Tr {exp[−β(H0 + ξB)]} (43)

and it employs

v(β) =
∂

∂ξ
exp[−β(H0 + ξB)]

∣

∣

∣

∣

ξ=0

= − exp(−βH0)

∫ β

0
exp(αH0)B exp(−αH0)dα , (44)

which is a special case of Eq. (39). This yields:

− ∂Z (T , ξ = 0)

∂ξ
= β Tr[B exp(−βH0)] = β Z (T , 0) 〈B〉0(T ),

(45)



see also Eq. (40). The last two relations are used in calculation of
the ξ-derivative of Ā(T ; ξ), Eq. (43), which yields

κAB(T ) = −Z
−1(T , 0)

× Tr

{

A

∫ β

0
exp[(α − β)H0]B exp(−αH0)dα

}

+ β 〈A〉0(T ) 〈B〉0(T ) . (46)

The first term is evaluated in the orthonormal basis of eigenvectors
of H0 which leads to the final result, Eq. (41).

• in special cases, when A or B commutes with H0, Eq. (46) yields

κAB(T ) = −β [〈AB〉0 − 〈A〉0 〈B〉0] (T ) ,

which is the quantum version of the classical relation, Eq. (24)



• a direct relation between the linear-response coefficient
κAB(T ) and the correlation of fluctuations cannot be given.
In the special case of B = −A, one obtains

κA,−A(T ) = −
∑

mn

|Amn|2
wm(T )− wn(T )

Em − En

− β 〈A〉20(T ) . (47)

For the fraction in the first term, one can use inequality
[a consequence of tanh(x)/x ≤ 1 valid for arbitrary real x ]

− wm(T )− wn(T )

Em − En

≤ β

2
[wm(T ) + wn(T )] , (48)

which yields



κA,−A(T ) ≤ β (∆A)20(T ) = β
[

〈A2〉0 − 〈A〉20
]

(T ) (49)

instead of the classical equality relation, Eq. (25).
The difference is due to quantum-mechanical fluctuations.

0 x

ϕ0(x)

linear harmonic oscillator:
ground-state wavefunction



4 Systems with varying particle number

system

surroundings

• exchange of particles between the studied system and its
surroundings can be treated both within classical and quantum
statistics by using the concept of chemical potential µ
(in analogy to exchange of energy treated by means of
temperature T ); here we focus on the quantum case



4.1 Quantum grandcanonical distribution

• we consider systems with identical particles of one kind;
basis vectors in the N-particle (N ≥ 1) Hilbert space H(N):

S {|λ1〉 ⊗ |λ2〉 ⊗ . . . ⊗ |λN〉} , (50)

where λ1, . . . , λN run over values of an index λ labelling the
orthogonal basis vectors |λ〉 in the one-particle Hilbert space
H(1) and where S denotes a symmetrization (for bosons) or
antisymmetrization (for fermions – ’Slater determinant’);
the complete Hilbert space (Fock space) is

H = H(0) ⊕H(1) ⊕H(2) ⊕ . . . ≡
∞
∑

N=0

⊕H(N) , (51)

where H(0) – the one-dimensional subspace of vacuum



• the identity operator I and the operator of the total
number of particles N are given by

I = I (0) ⊕ I (1) ⊕ I (2) ⊕ I (3) ⊕ . . . ≡
∞
∑

N=0

⊕ I (N) ,

N = I (1) ⊕ 2I (2) ⊕ 3I (3) ⊕ . . . ≡
∞
∑

N=0

⊕N I (N) , (52)

where I (N) – the identity operator in the Hilbert space H(N)

• operators that do not change the number of particles have
a similar structure. Here we confine ourselves only to such
operators, i.e., the Hamiltonian is

H = H(0) ⊕ H(1) ⊕ H(2) ⊕ . . . ≡
∞
∑

N=0

⊕H(N) , (53)



and observables can be reduced to

A = A(0) ⊕ A(1) ⊕ A(2) ⊕ . . . ≡
∞
∑

N=0

⊕A(N) (54)

• (a comment)
by using the creation and annihilation operators (a+λ , aλ),
further operators conserving the number of particles are

M =
∑

λ′λ

Vλ′λ a
+
λ′aλ +

∑

λ′ν′λν

Wλ′ν′λν a
+
λ′a

+
ν′aλaν + . . .

where Vλ′λ, Wλ′ν′λν , . . . are some constants, i.e., no terms
with different number of creation and annihilation operators
are present (such as, e.g., a+λ , aλaν , a+κ a

+
λ aν , . . . )



• the density matrix of the grandcanonical distribution for the
Hamiltonian H, Eq. (53), is defined by

ρ(T , µ) =
1

Z(T , µ)
exp[β(µN − H)] , (55)

where µ denotes the chemical potential and where the
grandcanonical partition function is equal to

Z(T , µ) = Tr {exp[β(µN − H)]} (56)

• the average value of the observable A, Eq. (54), is

〈A〉(T , µ) = Ā(T , µ) = Tr [Aρ(T , µ)] (57)



• in more details:

ρ(T , µ) =
1

Z(T , µ)
exp[β(µN − H)] =

∞
∑

N=0

⊕ ρ(N)(T , µ)

=
1

Z(T , µ)

∞
∑

N=0

⊕ exp(βµN) exp
[

−βH(N)
]

,

Z(T , µ) = Tr {exp[β(µN − H)]} =

=

∞
∑

N=0

exp(βµN)Tr(N)
{

exp
[

−βH(N)
]}

=
∞
∑

N=0

exp(βµN)
∑

n

exp
[

−βE
(N)
n

]

,

where the trace Tr
(N) refers to the subspace H(N) and

where E
(N)
n denote eigenvalues of the Hamiltonian H

(N),



and for the average of the observable A:

Ā(T , µ) = Tr [Aρ(T , µ)] =
∞
∑

N=0

Tr
(N)

[

A
(N)ρ(N)(T , µ)

]

=
1

Z(T , µ)

∞
∑

N=0

exp(βµN)Tr(N)
{

A
(N) exp

[

−βH(N)
]}

=
1

Z(T , µ)

∞
∑

N=0

exp(βµN)
∑

n

exp
[

−βE
(N)
n

]

A
(N)
nn ,

where A
(N)
nn are diagonal matrix elements of A

(N) between the

normalized eigenvectors |N, n〉 of the eigenvalue E
(N)
n :

A
(N)
nn = 〈N, n|A(N) |N, n〉



• in analogy to the canonical distribution, following relations
are valid in the grandcanonical case [U(T , µ) = H̄(T , µ)]:

U(T , µ)− µN̄(T , µ) = − ∂

∂β
ln[Z(T , µ)] , (58)

where N̄(T , µ) denotes the average number of particles,

Z(T , µ) = exp[−βΩ(T , µ)] ,

Ω(T , µ) = −kBT ln[Z(T , µ)] , (59)

where Ω(T , µ) denotes the grandcanonical potential,



S(T , µ) = − ∂Ω(T , µ)

∂T
, (60)

and

N̄(T , µ) = − ∂Ω(T , µ)

∂µ
, (61)

and a generalization of the Helmholtz relation, namely,

U(T , µ) = Ω(T , µ) + TS(T , µ) + µN̄(T , µ) (62)

• for the Hamiltonian depending on an external parameter ξ,
we get

〈

∂H(ξ)

∂ξ

〉

(T , µ) =
∂Ω(T , µ; ξ)

∂ξ
(63)

as a counterpart of Eq. (17)



• for the fluctuation of the number of particles N, we get

(∆N)2(T , µ) = kBT
∂N̄(T , µ)

∂µ
(64)

as a counterpart of Eq. (21)

N̄ N

for large systems:
grandcanonical distribution ∼ canonical distribution



4.2 Systems of identical non-interacting particles

◮ systems of non-interacting particles: ideal gases

◮ in the quantum case:
identical particles are indistinguishable

◮ two different classes (according to symmetry of wave-
function Ψ with respect to permutation of two particles)

◮ bosons: Ψ symmetric,
integer spin (photons, phonons, magnons, . . . )

◮ fermions: Ψ antisymmetric (Pauli exclusion principle),
half-integer spin (electrons, protons, neutrons, . . . )



4.2.1 One-particle Hamiltonians and occupation

numbers

• let us consider all orthonormalized eigenvectors |λ〉 and
eigenvalues Eλ, where λ = 1, 2, . . . ,M, of a one-particle
Hamiltonian H(1), i.e.,

H(1) =

M
∑

λ=1

|λ〉Eλ 〈λ| ≡ H . (65)

The individual contributions to the full Hamiltonian
[
∑

N
⊕H(N), Eq. (53)] for a non-interacting system are

H(0) = 0 , H(1) = H , H(2) = H ⊗ I + I ⊗ H ,

H(3) = H ⊗ I ⊗ I + I ⊗ H ⊗ I + I ⊗ I ⊗ H , . . . (66)

where I denotes the one-particle identity operator.



• the eigenstates of the full Hamiltonian are then given by
Eq. (50); we rewrite them in terms of the so-called occupation
numbers nλ, so that

S {|λ1〉 ⊗ |λ2〉 ⊗ . . . ⊗ |λN〉} =
∣

∣{nλ}Mλ=1

〉

, (67)

where the (anti)symmetrization S includes normalization to
unity and where

for bosons : nλ ∈ {0, 1, 2, . . .}
for fermions : nλ ∈ {0, 1} (68)

• the total number of particles in a particular eigenstate,
Eq. (67), can be expressed as

N =
M
∑

λ=1

nλ , (69)



and the corresponding eigenvalue of the full Hamiltonian is

E
(N)
{nλ}

=

M
∑

λ=1

nλEλ (70)

• the occupation numbers nλ can also be considered as
operators; the full non-interacting Hamiltonian, Eq. (66), can
be then written as

∞
∑

N=0

⊕H(N) =
M
∑

λ=1

Eλnλ , (71)

and the operator of the total number of particles, Eq. (52), is

given by Eq. (69) [ N =
∑M

λ=1 nλ ]



• (a comment on second quantization)
in terms of the creation (a+λ ) and annihilation (aλ) operators,
the occupation numbers (as operators) are

nλ = a+λ aλ ,

the operator of the total number of particles is

N =
M
∑

λ=1

nλ =
M
∑

λ=1

a+λ aλ ,

and the full non-interacting Hamiltonian can be expressed as

∞
∑

N=0

⊕H(N) =

M
∑

λ=1

Eλnλ =

M
∑

λ=1

Eλa
+
λ aλ



4.2.2 One-particle distribution functions

• the Z(T , µ), Eq. (56), can be evaluated exactly due to the
linear dependence of N, Eq. (69), and of energy eigenvalues,
Eq. (70), on the occupation numbers nλ; this yields

Z(T , µ) =
∑

{nλ}

exp

[

β

M
∑

λ=1

nλ(µ− Eλ)

]

=
M
∏

λ=1

∑

nλ

exp[β(µ− Eλ)nλ]

=

M
∏

λ=1

{1∓ exp[β(µ− Eλ)]}∓1 , (72)

where the upper (lower) sign refers to bosons (fermions).
Note that the bosonic case requires µ < Eλ for all λ.



• the grandcanonical potential is then

Ω(T , µ) = ± kBT
M
∑

λ=1

ln{1∓ exp[β(µ− Eλ)]} , (73)

from which the average values of the occupation numbers can
be obtained with use of Eq. (63) (ξ-derivative, ξ = Eλ):

〈nλ〉(T , µ) =
∂Ω(T , µ; {Eν})

∂Eλ

=
1

exp[β(Eλ − µ)]∓ 1
≡ fλ(T , µ) . (74)

This is the well-known Bose-Einstein or Fermi-Dirac
distribution function.



• Bose-Einstein / Fermi-Dirac distribution functions

f (E ;T , µ) =
1

exp[β(E − µ)]∓ 1
(75)

0
µ

f

E

BE

0

1/2

1

µ

f

E

FD



4.2.3 One-particle density matrix

• consider a one-particle operator A as an observable, so that

A(1) =
M
∑

λ,ν=1

|λ〉Aλν 〈ν| ≡ A , Aλν = 〈λ|A|ν〉 , (76)

while the other terms A(N) in the full observable [
∑

N
⊕A(N),

Eq. (54)] are constructed according to Eq. (66) for the

Hamiltonian [
∑

N
⊕A(N) =

∑

λν Aλνa
+
λ aν ]

• the quantum-mechanical average of the full observable
∑

N
⊕A(N) in a particular eigenvector, Eq. (67), is equal to

〈

{nλ}Mλ=1

∣

∣

∞
∑

N=0

⊕A(N)
∣

∣{nλ}Mλ=1

〉

=
M
∑

λ=1

nλAλλ , (77)



and its quantum-mechanical and statistical average is

Ā(T , µ) =
M
∑

λ=1

Aλλ 〈nλ〉(T , µ) =
M
∑

λ=1

Aλλ fλ(T , µ) , (78)

with an obvious physical meaning

• the last result can be given another form, namely,

Ā(T , µ) =
M
∑

λ=1

〈λ|A|λ〉 fλ(T , µ) = Tr[Af (T , µ)] , (79)

where the trace refers to the one-particle Hilbert space and
where we introduced a one-particle density matrix

f (T , µ) =

M
∑

λ=1

|λ〉 fλ(T , µ) 〈λ| (80)



4.2.4 One-particle linear response

• for a one-particle Hamiltonian H0, its perturbation B
[H(ξ) = H0 + ξB], and an observable A, the linear response
yields the susceptibility, defined with constant T and µ as

κAB(T , µ) =
∂Ā(T , µ; ξ = 0)

∂ξ
(81)

• its value, expressed in the basis defined by the eigenvectors
and eigenvalues (Eλ) of the unperturbed Hamiltonian H0, is

κAB(T , µ) =
M
∑

λ,ν=1

AλνBνλ

fλ(T , µ)− fν(T , µ)

Eλ − Eν

, (82)

where for Eλ = Eν , one has to use (L’Hospital’s rule)

fλ(T , µ)− fν(T , µ)

Eλ − Eν

=
∂f (E ;T , µ)

∂E

∣

∣

∣

∣

E=Eλ

(83)



• the proof of Eq. (82) is based on relation (T and µ omitted)

Ā = Tr[Af (H)] =

∫ ∞

−∞
Tr[Aδ(E − H)] f (E )dE , (84)

on the well-known limit

δ(x) = lim
ε→0+

i

2π

(

1

x + iε
− 1

x − iε

)

, (85)

and on the resolvent G (z) of a Hamiltonian H, defined for a
complex energy variable z by

G (z) = (z − H)−1 . (86)

This yields

δ(E − H) = lim
ε→0+

i

2π
[G (E + iε)− G (E − iε)] , (87)

and [due to the analyticity of G (z)] Ā as a complex integral



Ā =
1

2πi

∫

C

Tr[AG (z)] f (z)dz , (88)

where the complex integration path C is shown below
[double line – one-particle spectrum, crosses – poles of f (z)]

×

×

×

×

C

fermions

×

×

×

×

×

C

bosons



• the resolvents G (z) (of H) and G0(z) (of H0) are related by the
Dyson equation

G (z) = G0(z) + G0(z)ξBG (z) , (89)

from which we get

∂G (z)

∂ξ

∣

∣

∣

∣

ξ=0

= G0(z)BG0(z) , (90)

as well as a compact expression for the susceptibility

κAB =
1

2πi

∫

C

Tr[AG0(z)BG0(z)] f (z)dz (91)

• the eigenvalues Eλ and eigenvectors |λ〉 of H0 lead to

G0(z) =

M
∑

λ=1

|λ〉 1

z − Eλ

〈λ| (92)



and

κAB =

M
∑

λ,ν=1

AλνBνλ

1

2πi

∫

C

f (z)

(z − Eλ)(z − Eν)
dz . (93)

The last complex integral can easily be evaluated:

1

2πi

∫

C

f (z)

(z − Eλ)(z − Eν)
dz

=

{

[f (Eλ)− f (Eν)]/(Eλ − Eν) for Eλ 6= Eν ,

∂f (E )/∂E |E=Eλ
for Eλ = Eν ,

(94)

which completes the proof.



4.2.5 Ideal quantum gases – a summary

◮ the full Hamiltonian (the dynamics) of an ideal gas is
specified by the one-particle Hamiltonian

◮ the basic statistical properties (thermodynamic potentials)
within Boltzmann statistics (grandcanonical distribution)
are given by the spectrum of the one-particle Hamiltonian

◮ the average occupation numbers of individual one-particle
eigenstates are given by the corresponding one-particle
eigenvalues and by the BE/FD distribution function

◮ the average value of a one-particle observable and its linear
response to a one-particle perturbation of the Hamiltonian
can be evaluated within the one-particle Hilbert space


