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0 Statistical physics

» macroscopic systems with a large number of (interacting)
particles

v

both classical and quantum systems

v

properties and quantities relevant for experiment

» systems under time-independent external conditions
(equilibrium properties)

» systems under (well-defined) time-dependent perturbations

(nonequilibrium properties)

e in this course:
focus on theoretical techniques and condensed systems



1 Thermodynamic equilibrium, classical phase space
and distribution functions

1.1 Thermodynamic equilibrium and time averages

e the state of a classical N- particle system is represented by a
point (p, q) = ({pi}3Y,, {g:}3",) in the 6N-dimensional phase
space

e dynamics of the system is given by the Hamiltonian H(p, q)
(time-independent) and the equations of motion

dpi(t) _ OH(p,q) dgi(t) _ OH(p,q)

dt ~ oq dt  Ops (1)

e their solution for specified initial conditions yields the
trajectory (p(t), g(t)) in the phase space



e for any observable quantity A = A(p, q), one can then define
its time average A as

e for interacting many-particle systems:
the time averages do not depend on the initial conditions

e assessment of the dependence of these time averages on the
parameters (£) of the Hamiltonian represents one of the
central problems of equilibrium statistical physics

H=H(p, ) = A=A



1.2 Distribution functions and statistical averages

e the time averages can be replaced by statistical averages
defined as

3N

A= /A(p, q)p(p.q)dr, dr =][dpida;, (3)

i=1

(A)

where p(p, q) is the distribution function

e according to a general theory, the distribution function
should be a function of the Hamiltonian only,

p(p,q) = »(H(p,q)), (4)

where the function ¢ has to be specified



1.3 Microcanonical distribution and ergodicity

e for an isolated system with a prescribed total energy E, the
microcanonical distribution is defined as

p(p;q;: E) ~ 6(H(p,q) — E), (5)

which yields the statistical averages as functions of the total
energy E (and of the other parameters ¢ of the Hamiltonian):

J6(H(p,q)— E)drl (©)

(A)(E) = A(E)

e the microcanonical distribution, Eq. (5), can be justified by
the so-called ergodic hypothesis: each trajectory of the system
scans the whole isoenergetic surface H(p,q) = E



2 Classical canonical distribution

2.1 Canonical distribution and partition function

e for a system with thermal contact with its surroundings at
temperature T, the canonical distribution function
(Boltzmann statistics) is appropriate, namely,

oo T) ~ eol-GHp.al. 6= om0

where kg is the Boltzmann constant.
Here, we assume a fixed number of particles (N = const).

e the value of kg: 1 eV =~ 11600 K



e the simplest consequence is the Maxwell-Boltzmann
distribution of velocities (or momenta) of individual particles
(of mass m) in a gas (or a liquid or a solid):

2
P
w(ps) ~ exp (— m)




e the normalized canonical distribution ([ pdl' = 1) requires
knowledge of the partition function ('Zustandssumme')

2(T) = [ el-sH(p.qldr (®)
which yields
1
p(p,a; T) = Z(7) exp[—BH(p. q)] (9)
and general temperature-dependent statistical averages
- 1
A(T) = 7 /A(p, q) exp[—BH(p, q)]dI, (10)

including, e.g., the internal energy of the system (for A = H)
0

U(T) = H(T) = 95

In[Z(T)] (11)



2.2 Free energy and its derivatives

e the partition function can also be used to calculate the free
energy F(T):

Z(T) = exp[-BF(T)], F(T) = —ksTIn[Z(T)], (12)
from which various expressions for the entropy follow, namely,

s(ry = - 20 (13)

S(T) = =k [ plp.: TYnlp(p.as TIAr (14

[analogy to the mathematical entropy o = —>_ w,In(w,)
related to probabilities w, > 0 such that }  w,=1]



e U(T), F(T), and S(T) satisfy the Helmholtz relation
U(T) = F(T)+ TS(T) (15)
and their derivatives define the heat capacity (specific heat)

_OUT) _ ;08T L PR g

1) ==57 0T or?

e classical equipartition theorem = heat capacity for

» ideal gases: C(T) = (3/2)Nkg

» solids (in harmonic approximation): C(T) = 3Nkg
(the Dulong-Petit law)



e for an external parameter ¢ entering the Hamiltonian,
H=H(p,q;§) = F=F(T;E), and one can prove

e for a special (linear) {-dependence of H, i.e.,

H(p,q:§) = Ho(p,q) +¢B(p,g), §—0, (18)

where the second term defines a small perturbation added to
the unperturbed Hamiltonian Hy, we get

(B)o(T) = OF(T; & =10)/0¢, (19)

where (...)o — average with the unperturbed Hamiltonian Hy



e for a system in an applied magnetic field b:
the perturbed Hamiltonian is

H(b) = Hy — bM ,
where M is the total magnetic moment;
its value in zero field is (B=—-M, £ =b— 0):
OF(T;b=0
wo(7) = - 2T =0)

ob



2.3 Linear response and fluctuations

e the standard measure of fluctuations of a random real
quantity A around its average value A = (A) is defined as

(AA)? = <(A—Z\)2> = A — (A2, (20)

(AA)? — scatter of the quantity A,

(AA)? — root-mean-square (r.m.s.) deviation
e for the canonical distribution and A = H, one can prove
(AH)X(T) = ks T? C(T), (21)

where C(T) is the heat capacity; this is a direct relation
between a macroscopic quantity C and a microscopic fe_ature
of the system (AH)? (energy fluctuations around U = H)



e if we consider dependence of the quantities on the system
size (number of particles N), we find U(T) = H(T) and C(T)

proportional to N (extensive quantities), which yields
V(AH)? 1
— X ,
H VN
i.e., the energy fluctuations in large systems (N — o)

are negligible as compared to the internal energy
(canonical distribution ~ microcanonical distribution)

energy




e similarly, for correlation of fluctuations of two random
quantities A and B (with respect to their average values A
and B), we introduce the quantity

((A-A)(B-B)) =

B - AB (22)

e let us consider a perturbation B added to the Hamiltonian
Ho according to Eq. (18) [H(§) = Ho +&B, £ — 0]; this
perturbation induces a change in the statistical average of an
observable A and it leads to the following linear-response
coefficient _
0A(T;¢£=0)

0& ’

the so-called isothermic susceptibility

K,AB(T) = (23)



e one can prove the relation

kas(T) = —B((A—-A)(B~-B)),(T)
= —B[(AB)o — (Ao (Bl (T),  (24)

where all averages on the r.h.s. are taken in the unperturbed
system

e this relation connects the linear-response coefficient kag(T)
(a macroscopic property) with the correlation of fluctuations
in the unperturbed system (a microscopic quantity)



e a special form of Eq. (24) for B = —A yields
ka-a(T) = B(AAR(T) = B [(A%)o — (A)F] (T). (25)

which explains, e.g., the Curie law for magnetic susceptibilities
at low temperatures: k(T)~ Tt




3 Elementary quantum statistics

3.1 Quantum-mechanical and statistical averaging

e basic statements of the quantum theory:

» the pure state of a quantum-mechanical system is defined
by a state vector |W) in the Hilbert space

» a real physical observable is represented by a Hermitian
operator A

» the quantum-mechanical average of the quantity (operator)
A in the state |V) is given by

AV} = (VA[V), (26)

where we assume the state vector normalized to unity,
(V|v) =1



e if the system can be prepared in several states |W;)
with probabilities p; (i=1,2,...; p; >0, > .pi=1),
the quantum-mechanical and statistical average is given by

(A = A = Zp; (ViAW) = ZP/’TT{AW:')(W/'H

= Tr {A [Z pi Vi) (V| } = Tr(Ap), (27)

where Tr denotes the trace and where we introduced the
density matrix (statistical operator) p given by

p = Z (Vi) pi (Vi (28)

which is a positive-definite Hermitian operator



e (two technical notes)

» within the Dirac formalism, a ket-vector |¢) and
a bra-vector (x| define a linear operator |¢)(x];

its action is given by [1) — |¢p)(x|¥);
its trace equals the scalar product of both vectors:

Tr(l¢)(x]) = (xl9)
» for any operators X and Y: Tr(XY) = Tr(YX)

e the density matrix satisfies relations
Tr(p) = 1,  Te(p®) < 1, (29)
where the former one is a direct consequence of (V;|¥;) =1

and > .pi =1; the equality sign in the latter relation is
encountered only for pure states



3.2 Canonical distribution and partition function

e the canonical distribution (Boltzmann statistics) for a system
with Hamiltonian H and at temperature T is defined as

1

§T) = g7 @0(-5H), (30)

where the partition function Z(T) is given by

Z(T) = Trlexp(=pH)] (31)

o if the eigenvalues and normalized eigenvectors of H are
denoted by E, and |n) (n=1,2,...), we get for Z(T)

Z( T) = Z exp(_BEn)a (32)

n



for the density matrix p and its matrix elements pp,,

AT = STy ol () = T

pmn(T) = {m|p(T)[n) = wn(T)dmn, (33)

and for the general quantum-mechanical and statistical
average (with matrix elements A, = (m|A|n))

(A(T) = A(T) = Tu[Ap(T)] = > wa(T)(nlAln)

n

= > wo(T) Apr = ﬁ > exp(—BEq) Am, (34)

n

which has the form of Eq. (27) [A =Y, pi(Vi|AlV)) |



e (a technical note)

if we know all eigenvalues E, (n=1,2,...) and normalized
eigenvectors |n) of the Hamiltonian H, we can write its
spectral representation

H_ZE\ Z|

this representation enables one to extend an arbitrary function
f(.) of a real variable to the same function of the operator H:

= > f(E)In)(nl = > |n) f(E

this definition can be used, e.g., for f(H) = exp(—3H)



3.3 Free energy and its derivatives

e from the partition function Z(T), the internal energy U(T),
the free energy F(T), the entropy S(T), and the heat
capacity C(T) can be obtained in the same way as in the
classical case; this leads, e.g., to expressions

S(T) = —ks Te{p(T) Info(T)]}
= ks 3 wa(T) Infwa(T)) (35)

n

e the relations involving derivatives with respect to an external
parameter ¢ of the Hamiltonian H({) require more effort in
the quantum case, since the operators H(¢) and OH(&)/0¢

do not commute in general



e it can be proved that [the quantum version of Eq. (17)]

OH(£) OF(T;¢)
<as >(T): e

while in the special case of a linear £-dependence
H(é-):HO—i_é-Ba §_>07
we get [the quantum version of Eq. (19)]

_ OF(T;£=0)

(Bo(T) 5



o for the proof, we define u(3,&) = exp[—SH()], for which we
get (the Bloch equation):

du(B,¢§) _ _
or L+ HEOUBO =0, u0=1. (37
and for v(3,&) = 0u(p,£)/0¢, we get:
ov(B,6) | _OH(§) _
55 HHEOVE.O = S u(.9. V0.6 =0. (39)

The last equation can be solved with an Ansatz

v(B,8) = u(B,§) c(B,€) = exp[-LH(E)] c(B,¢)

and with initial condition ¢(3,£) = 0:

0c(B,§) _ _9H(E)

expl-AH(E)] =52 = =

xp[—BH(E)],



B
(0.0 = ~ [ eplar©] 5 eol-am(@]da.
v(B,§) = — exp[-BH(¢)]
B
< [ evlat(e) ) epl-ar(@]da.  (39)
0

From this result, we get:

_9Z(T,¢)
23

~ T {eXP[—BH(S)]

0
- —a—fTr[u(ﬂ,f)] = —Tr[v(B,¢)]

. OH(E)
< [ enlae) 25 epl-an(9)da




o oH(¢)
= [ e {eolta - N 5 el-ati@) | da

- /0 nn {eXP[—BH(S)] 82—?} da

— om{el-ph(e) |

= sz o)), (40)

This means

dZ(T,¢) OH(§)
o€ = BZ(T,€)<8—§>(T),

from which the quantum version of Eq. (17) follows immediately.



3.4 Linear response and fluctuations

e the quantum version of the relation between the energy
fluctuation (AH)?(T) and the heat capacity C(T) is the same
as in the classical case, Eq. (21):

(AH)X(T) = ks T* C(T)

e for a perturbation B added to the Hamiltonian Hj
[ H() = Ho+&B, € — 0], the linear response of an
observable A leads to the susceptibility defined by Eq. (23):

OA(T; € =0)

K,AB(T) = ag



e the result can be written using the eigenvectors |n)
and eigenvalues E, of the Hamiltonian Hy
and with A, = (m|A|n), B,m = (n|B|m) as

(T) — wa(T)
E.— E,

Wm
'%AB(T) - ZAmanm

mn

+ 5 (A)0(T) (B)o(T), (41)

where in the first term, one has to use (L'Hospital's rule)
Win(T) — wa(T)
E,—E,

= —Bwn(T) for E,, = E,. (42)

This proves the importance of the ground-state degeneracy for
the Curie-like behavior of the low-temperature susceptibility
[K(T)~T7]



e (an example) for a 2-dimensional Hilbert space, we take
Hy = Ao, with a real constant A, and A= —B = o0y, where

/(01 (1 0
=\10)" %27\0 -1 )"

we get
_ [ tanh(BA)/A  for A#0
’""(T)_{ﬁ for A =0
K
...... A =
-~ A#£0
_\\-.\.k. .
0 - — e,




e the proof of Eq. (41) starts from
AT:6) = Z7HT,&)Tr{Aexp[-B(Ho +£B)]}
Z(T,§) = Tr{exp[-f(Ho +¢B)1} (43)

and it employs

W(p) = (%exp[—ﬁ(Ho +¢B))

=0
B
= —exp(—,BHo)/0 exp(aHy) B exp(—aHy) da, (44)

which is a special case of Eq. (39). This yields:

COUTE=0) _ 5y(B exp(—aHo)] = 52(T.0) (B)o(T),

73
(45)



see also Eq. (40). The last two relations are used in calculation of
the ¢-derivative of A(T;¢), Eq. (43), which yields

kag(T) = —Z7XT,0)
B
X Tr{A/O exp[(a — B)Hp] B exp(—aHp) da}
+ B(A)(T)(B)o(T). (46)

The first term is evaluated in the orthonormal basis of eigenvectors
of Hp which leads to the final result, Eq. (41).

e in special cases, when A or B commutes with Hp, Eq. (46) yields

kag(T) = —B[(AB)o — (A (B)o] (T),

which is the quantum version of the classical relation, Eq. (24)



e a direct relation between the linear-response coefficient
kag(T) and the correlation of fluctuations cannot be given.

In the special case of B = —A, one obtains
T) — wy(T)
AT) = =5 A n
Ka—a(T) %:| | E _E
— B(AR(T). (47)

For the fraction in the first term, one can use inequality
[a consequence of tanh(x)/x <1 valid for arbitrary real x|
Win(T) —wa(T) _ B

_ < =
E,—E, -2

[Win(T) + wa(T)], (48)

which yields



fia-a(T) < B(AA)(T) = B [(A%)o— (A)R] (T)  (49)

instead of the classical equality relation, Eq. (25).
The difference is due to quantum-mechanical fluctuations.

linear harmonic oscillator:
ground-state wavefunction

/ \ vo(x)
/ \




4 Systems with varying particle number

~~7=~_ surroundings

e exchange of particles between the studied system and its
surroundings can be treated both within classical and quantum
statistics by using the concept of chemical potential p

(in analogy to exchange of energy treated by means of
temperature T); here we focus on the quantum case



4.1 Quantum grandcanonical distribution

e we consider systems with identical particles of one kind;
basis vectors in the N-particle (N > 1) Hilbert space HM):

S{M) @)@ ... @ | n)}, (50)

where Aq,..., Ay run over values of an index A\ labelling the
orthogonal basis vectors |\) in the one-particle Hilbert space
HY) and where S denotes a symmetrization (for bosons) or
antisymmetrization (for fermions — 'Slater determinant’);

the complete Hilbert space (Fock space) is

H=HOsHVeHPs...= Y aH®, (51)
N=0

where H(® - the one-dimensional subspace of vacuum



e the identity operator |/ and the operator of the total
number of particles N are given by

N=0
N = IWg2Pa3@a. ... =) aNi™M, (52
N=0

where /(M) — the identity operator in the Hilbert space H)

e operators that do not change the number of particles have
a similar structure. Here we confine ourselves only to such
operators, i.e., the Hamiltonian is

H=HYaHYoH? g .. =Y aH®,  (53)
N=0



and observables can be reduced to

A=A A A e, . =Y oA  (54)
N=0

e (a comment)
by using the creation and annihilation operators (ay, a,),
further operators conserving the number of particles are

M = E V)\/)\aj\_,a)\ + E W,\/l,/,\,,aj\r,aj,a,\a,, + ...
A LEZONY

where Vi, Wy, ... are some constants, i.e., no terms
with different number of creation and annihilation operators
are present (such as, e.g., ay, axa,, afaja, ...)



e the density matrix of the grandcanonical distribution for the
Hamiltonian H, Eq. (53), is defined by

AT.0) = ey eoliN =K. (59)

where p denotes the chemical potential and where the
grandcanonical partition function is equal to

Z(T,p) = Tr{exp[B(uN — H)]} (56)

e the average value of the observable A, Eq. (54), is

(AT, 1) = A(T,p) = Tr[Ap(T, )] (57)



e in more details:

o(T,p) =

Z(Tau) =

where the trace

27 PN - H)] = szzo@p("’)(ﬂu)

o0

> @ exp(BuN) exp [—ﬁH(N)] :

N=0

1
2(T,p)

Tr {exp[S(uN — H)]} =

o0

(N) _BHWN)
Nz_:oexp(ﬂuN)Tr {exp[ BH ]}

exp(BuN) Z exp [—/BEISN)} 7

N=0

Tr(M) refers to the subspace H(M) and

where E,(,N) denote eigenvalues of the Hamiltonian H(N),



and for the average of the observable A:

AT, ) = Te[Ap(T, )] = i T [ AM S (T, )|
N=0

—_

exp(BuN) TrtV) {A(N exp[ BH N)]}

N
-

Mg I[M]8

(

1)

1
2(T,p)

exp(BuN) Z exp [—ﬁE,SN)] A

n

2
g

N)

where Af,,, are diagonal matrix elements of AN between the

normalized eigenvectors |N, n) of the eigenvalue EMM,

AN = (N, n| AM N, )



e in analogy to the canonical distribution, following relations

are valid in the grandcanonical case [U(T,pn) = H(T,u)]:
- 0
UT, 1) = nN(T, ) = = 55 nl2(T w)], (58)

where N(T,p) denotes the average number of particles,

Z(T,p) = exp[-BQT,p)],
Q(T,u) = —ksTIn[Z(T,u), (59)

where Q(T,u) denotes the grandcanonical potential,



(T, )

ST = - AL (50
and
(T p) = - L0, (61)

and a generalization of the Helmholtz relation, namely,

U(T,p) = T, 1) + TS(T, ) + uN(T, ) (62)

e for the Hamiltonian depending on an external parameter ¢,

we get
(P5) (o = BT @y

as a counterpart of Eq. (17)



e for the fluctuation of the number of particles N, we get

ON(T, 1)
T2\ r)
o

N N

(AN (T, 1) = ko (64)

as a counterpart of Eq. (21)

for large systems:
grandcanonical distribution ~ canonical distribution



4.2 Systems of identical non-interacting particles

» systems of non-interacting particles: ideal gases

» in the quantum case:
identical particles are indistinguishable

» two different classes (according to symmetry of wave-
function W with respect to permutation of two particles)

» bosons: W symmetric,
integer spin (photons, phonons, magnons, .. .)

» fermions: W antisymmetric (Pauli exclusion principle),
half-integer spin (electrons, protons, neutrons, .. .)



4.2.1 One-particle Hamiltonians and occupation
numbers

e let us consider all orthonormalized eigenvectors |A\) and
eigenvalues E,, where A =12 ..., M, of a one-particle
Hamiltonian H®), ie.,

M
HD = YN E(\ = H. (65)

The individual contributions to the full Hamiltonian
[ Sy ®HM, Eq. (53)] for a non-interacting system are

HO = o, HY = H, H® = Hel + I®H,
H® = Helel + IoH®! + I®@I®H, ... (66)

where | denotes the one-particle identity operator.



e the eigenstates of the full Hamiltonian are then given by
Eq. (50); we rewrite them in terms of the so-called occupation
numbers ny,, so that

S{a) @)@ ... @)} = [{m}l) (67)

where the (anti)symmetrization S includes normalization to
unity and where
for bosons:  nmy, €{0,1,2,...}
for fermions :  ny € {0,1} (68)

e the total number of particles in a particular eigenstate,
Eq. (67), can be expressed as

M
N=> n, (69)
A=1



and the corresponding eigenvalue of the full Hamiltonian is

M
E) = > mE (70)

A=1

e the occupation numbers ny can also be considered as
operators; the full non-interacting Hamiltonian, Eq. (66), can
be then written as

oo M
SeH® = 3 B ()
N=0 A=1

and the operator of the total number of particles, Eq. (52), is
given by Eq. (69) [N =33 ny ]



e (a comment on second quantization)
in terms of the creation (ay") and annihilation (a,) operators,
the occupation numbers (as operators) are

— ot
ny =a,ax,

the operator of the total number of particles is

M M
_ _ +
N = E n, = E ay ay,
=1 =1

and the full non-interacting Hamiltonian can be expressed as

00 M M
Z ) H(N) = Z E)\n)\ = Z E)\a;\i_a)\
N=0 A=1 A=1



4.2.2 One-particle distribution functions

e the Z(T,u), Eq. (56), can be evaluated exactly due to the
linear dependence of N, Eq. (69), and of energy eigenvalues,
Eq. (70), on the occupation numbers ny; this yields

M
Z(T,p) = ) exp [BZ m(u — Ey)
{m} A=1
M

= [[ D expls(n— E\)ni]

A=1 ny

M
= [[{iFeplBe-EN}" . (72

where the upper (lower) sign refers to bosons (fermions).
Note that the bosonic case requires p < Ey for all A.



e the grandcanonical potential is then

M
QT,p) = ke T Y _ In{lFexp[B(n—E)},  (73)

A=1

from which the average values of the occupation numbers can
be obtained with use of Eq. (63) (&-derivative, & = E)):

(m)(Top) = 39”{;}?@})

1
= = AH(T,un). 74
S N S A LA D R
This is the well-known Bose-Einstein or Fermi-Dirac
distribution function.




e Bose-Einstein / Fermi-Dirac distribution functions

f(E; T, pu)
i
\
\ BE
\
\
\
\
\
\\
0 \\\
"

FD

(75)




4.2.3 One-particle density matrix

e consider a one-particle operator A as an observable, so that

M
A = N INAW ] = A, Aw = (MAy),  (76)
Av=1
while the other terms AM) in the full observable [ >, ®AM),
Eq. (54)] are constructed according to Eq. (66) for the
Hamiltonian [ ", ®AM) =3 'A,,ata, |

e the quantum-mechanical average of the full observable
>y @AM in a particular eigenvector, Eq. (67), is equal to

M

AmBLD e AN [{n ) = > mAn, (77

A=1



and its quantum-mechanical and statistical average is

~ M M
A(T,p) = Z Ao (m)(T, p) = Z AT, 1), (78)

with an obvious physical meaning

e the last result can be given another form, namely,
M

AT 1) =) (AANA(T, 1) = TAF(T, )], (79)

A=1

where the trace refers to the one-particle Hilbert space and
where we introduced a one-particle density matrix

M
F(T,u) =D INAT, 1) (A (80)



4.2.4 One-particle linear response

e for a one-particle Hamiltonian Hy, its perturbation B
[H(§) = Ho + £B], and an observable A, the linear response
yields the susceptibility, defined with constant T and u as

OA(T, ;€ = 0)
o3

kas(T,p) = (81)

e its value, expressed in the basis defined by the eigenvectors
and eigenvalues (EA) of the unperturbed Hamiltonian Hp, is

Z AT, 1) — £(T, 1)
K,AB T ,U A)\I/ VA ) (82)
Av=1 EA - EV

where for E, = E,, one has to use (L'Hospital’s rule)

f)\(T> :u) - ﬁ/(T> :u) — af:(E' T?:u)
E,.—E OE

(83)

E=E,



e the proof of Eq. (82) is based on relation (T and p omitted)

A = T[AF(H)] = / T LAS(E — M) F(E)E,  (84)

—00
on the well-known limit

5(x) = lim i( L 1 > (85)

e—0+t 2T \ x+1e x —1i¢

and on the resolvent G(z) of a Hamiltonian H, defined for a
complex energy variable z by

G(z) = (z—H)™. (86)
This yields

S(E~H) = lim i (G(E+ic)— G(E—ic)],  (87)

and [due to the analyticity of G(z)] A as a complex integral



A= [ TAG(2)] f(2) dz, (88)
C

2mi

where the complex integration path C is shown below
[double line — one-particle spectrum, crosses — poles of f(z)]

X

X
X

X

..... = SIPSE gpp—
C x C

X

X
X

fermions bosons



e the resolvents G(z) (of H) and Go(z) (of Hp) are related by the
Dyson equation

G(z) = Go(z) + Go(2)¢BG(z2), (89)
from which we get
0G(z
82 ) = Go(Z)BGo(Z), (90)
£=0
as well as a compact expression for the susceptibility
1
s = / Tr[AGo(2)BGo(2)] F(2) dz (91)
2mi Jc

e the eigenvalues E) and eigenvectors |\) of Hp lead to

1
Z—E)\

M
Go(z) = >IN (A (92)
A=1



and

M
RKAB — Z A)\ B)\ i/ f(Z) dz. (93)
. YV 2ori Je (z— E\)(z—E)

The last complex integral can easily be evaluated:
1 f(z)
271 Jc (z— E)\)(z—E))

[ If(B) - f(E)/(Ex—E) for Ex#E,,
| Of(E)/OE|e=k, for Ey = E,,

dz

(94)

which completes the proof.



4.2.5 Ideal quantum gases — a summary

>

>

the full Hamiltonian (the dynamics) of an ideal gas is
specified by the one-particle Hamiltonian

the basic statistical properties (thermodynamic potentials)
within Boltzmann statistics (grandcanonical distribution)
are given by the spectrum of the one-particle Hamiltonian

the average occupation numbers of individual one-particle
eigenstates are given by the corresponding one-particle
eigenvalues and by the BE/FD distribution function

the average value of a one-particle observable and its linear
response to a one-particle perturbation of the Hamiltonian
can be evaluated within the one-particle Hilbert space



