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Advantages of Hierarchical Linear Modeling

Jason W. Osborne
University of Oklahoma

Hierarchical, or nested, data structures are common throughout many areas of research.
However, until recently there has not been any appropriate technique for analyzing these types
of data. Now, with several userfriendly software programs available, and some more readable
texts and treatments on the topic, researchers need to be aware of the issue, and how it should
be dealt with. The goal of this paper is to introduce the problem, how it is dealt with
appropriately, and to provide examples of the pitfalls of not doing appropriate analyses.

What is a Hierarchical Data Structure?

People (and other living creatures, for that matter) tend to exist within organizational
structures, such as families, schools, business organizations, churches, towns, states, and
countries. In education, students exist within a hierarchical social structure that can include
family, peer group, classroom, grade level, school, school district, state, and country. Workers
exist within production or skill units, businesses, and sectors of the economy, as well as
geographic regions. Health care workers and patients exist within households and families,
medical practices and facilities (a doctor's practice, or hospital, e.g.), counties, states, and
countries. Many other communities exhibit hierarchical data structures as well.

Bryk and Raudenbush (1992) also discuss two other types of data hierarchies that are less
obvious: repeatedmeasures data and metaanalytic data. Once one begins looking for
hierarchies in data, it becomes obvious that data repeatedly gathered on an individual is
hierarchical, as all the observations are nested within individuals. While there are other
adequate procedures for dealing with this sort of data, the assumptions relating to them are
rigorous, whereas procedures relating to hierarchical modeling require fewer assumptions.
Also, when researchers are engaged in the task of metaanalysis, or analysis of a large number
of existing studies, it should become clear that subjects, results, procedures, and experimenters
are nested within experiment. While this paper will not delve into these issues further, readers
are encouraged to refer to Bryk and Raudenbush (1992) for further discussion of the
advantages of hierarchical analysis for these types of data.
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Why is a Hierarchical Data Structure an Issue?

Hierarchical, or nested, data present several problems for analysis. First, people or creatures
that exist within hierarchies tend to be more similar to each other than people randomly
sampled from the entire population. For example, students in a particular thirdgrade
classroom are more similar to each other than to students randomly sampled from the school
district as a whole, or from the national population of thirdgraders. This is because students
are not randomly assigned to classrooms from the population, but rather are assigned to
schools based on geographic factors. Thus, students within a particular classroom tend to come
from a community or community segment that is more homogeneous in terms of morals and
values, family background, socioeconomic status, race or ethnicity, religion, and even
educational preparation than the population as a whole. Further, students within a particular
classroom share the experience of being in the same environment the same teacher, physical
environment, and similar experiences, which may lead to increased homogeneity over time..

The problem of independence of observations. This discussion could be applied to any
level of nesting, such as the family, the school district, county, state, or even country. Based on
this discussion, we can assert that individuals who are drawn from an institution, such as a
classroom, school, business, or health care unit, will be more homogeneous than if individuals
were randomly sampled from a larger population. Herein lies the first issue for analysis of this
sort of data. Because these individuals tend to share certain characteristics (environmental,
background, experiential, demographic, or otherwise), observations based on these individuals
are not fully independent. However, most analytic techniques require independence of
observations as a primary assumption for the analysis. Because this assumption is violated in
the presence of hierarchical data, ordinary least squares regression produces standard errors
that are too small (unless these socalled design effects are incorporated into the analysis). In
turn, this leads to a higher probability of rejection of a null hypothesis than if: (a) an
appropriate statistical analysis were performed, or (b) the data included truly independent
observations.

The problem of how to deal with crosslevel data. Going back to the example of our third
grade classroom, it is often the case that a researcher is interested in understanding how
environmental variables (e.g., teaching style, teacher behaviors, class size, class composition,
district policies or funding, or even state or national variables, etc.) affect individual outcomes
(e.g., achievement, attitudes, retention, etc.). But given that outcomes are gathered at the
individual level, and other variables at classroom, school, district, state, or nation level, the
question arises as to what the unit of analysis should be, and how to deal with the crosslevel
nature of the data.

One strategy would be to assign classroom or teacher (or school, district, or other)
characteristics to all students (i.e., to bring the higherlevel variables down to the student
level). The problem with this approach, again, is nonindependence of observations, as all
students within a particular classroom assume identical scores on a variable.

Another way to deal with this issue would be to aggregate up to the level of the classroom,
school, district, etc. Thus, we could talk about the effect of teacher or classroom characteristics
on average classroom achievement. However, there are several issues with this approach,
including: (a) that much (up to 8090%) of the individual variability on the outcome variable is
lost, which can lead to dramatic under or overestimation of observed relationships between
variables (Bryk & Raudenbush, 1992), and (b) the outcome variable changes significantly and
substantively from individual achievement to average classroom achievement.

Aside from these problems, both these strategies prevent the researcher from disentangling



individual and group effects on the outcome of interest. As neither one of these approaches is
satisfactory, the third approach, that of hierarchical modeling, becomes necessary.

How do Hierarchical Models Work? A Brief Primer

The goal of this paper is to introduce the concept of hierarchical modeling, and explicate the
need for the procedure. It cannot fully communicate the nuances and procedures needed to
actually perform a hierarchical analysis. The reader is encouraged to refer to Bryk and
Raudenbush (1992) and the other suggested readings for a full explanation of the conceptual
and methodological details of hierarchical modeling.

The basic concept behind hierarchical modeling is similar to that of OLS regression. On the
base level (usually the individual level, referred to here as level 1), the analysis is similar to
that of OLS regression: an outcome variable is predicted as a function of a linear combination
of one or more level 1 variables, plus an intercept, as so:

where  0j represents the intercept of group j,  1j represents the slope of variable X1 of group j,
and rij represents the residual for individual i within group j. On subsequent levels, the level 1
slope(s) and intercept become dependent variables being predicted from level 2 variables:

and so forth, where   and   are intercepts, and   and   represent slopes predicting 

 and   respectively from variable W1. Through this process, we accurately model the

effects of level 1 variables on the outcome, and the effects of level 2 variables on the outcome. In
addition, as we are predicting slopes as well as intercepts (means), we can model crosslevel
interactions, whereby we can attempt to understand what explains differences in the
relationship between level 1 variables and the outcome. This will be discussed a bit more below.

An Empirical Comparison of the Three Approaches to Analyzing Hierarchical Data

To illustrate the outcomes achieved by each of the three possible analytic strategies for dealing
with hierarchical data, disaggregation (bringing level 2 data down to level 1), aggregation, and
multilevel modeling, data were drawn from the National Education Longitudinal Survey of
1988. This data set contains data on a representative sample of approximately 28,000 eighth
graders in the United States at a variety of levels, including individual, family, teacher, and
school. The analysis we performed predicted composite achievement test scores (math, reading
combined) from student socioeconomic status (family SES), student locus of control (LOCUS),
the percent of students in the school who are members of racial or ethnic minority groups
(%MINORITY), and the percent of students in a school who receive free lunch (%LUNCH).
Achievement is our outcome, SES and LOCUS are level 1 predictors, and %MINORITY and
%LUNCH are level 2 indicators of school environment. In general, SES and LOCUS are
expected to be positively related to achievement, and %MINORITY and %LUNCH are expected
to be negatively related to achievement. In these analyses, 995 of a possible 1004 schools were
represented (the remaining nine were removed due to insufficient data).

Disaggregated analysis. In order to perform the disaggregated analysis, the level 2 values
were assigned to all individual students within a particular school (which is how the NELS



data set comes). A standard multiple regression was performed via SPSS entering all predictor
variables simultaneously. The resulting model was significant, with R=.56, R
square=.32,F (4,22899)=2648.54, p < .0001. The individual regression weights and
significance tests are presented in Table 1.

Table 1
Comparison of three analytic strategies.

Disaggregated Aggregated Hierarchical

Variable: B SE t B SE t B SE t

SES 4.97a .08 62.11** 7.28 b .26 27.91** 4.07 c .10 41.29**

LOCUS 2.96 a .08 37.71** 4.97 b .49 10.22** 2.82 a .08 35.74**

%MINORITY 0.45 a .03 15.53** 0.40 a .06 8.76** 0.59 b .07 8.73**

%LUNCH 0.43 a .03 13.50** 0.03 b .05 0.59 1.32 c .07 19.17**

Note: B refers to an unstandardized regression coefficient, and is used for the HLM analysis to represent the
unstandardized regression coefficients produced therein, even though these are commonly labeled as betas and
gammas. SE refers to standard error. Bs with different subscripts were found to be significantly different from other
Bs within the row at p< .05. ** p < .0001.

All four variables were significant predictors of student achievement. As expected, SES and
LOCUS were positively related to achievement, while %MINORITY and %LUNCH were
negatively related.

Aggregated analysis. In order to perform the aggregated analysis, all level 1 variables
(achievement, LOCUS, SES) were aggregated up to the school level (level 2) by averaging. A
standard multiple regression was performed via SPSS entering all predictor variables
simultaneously. The resulting model was significant, with R=.87, R
square=.75,F (4,999)=746.41, p < .0001. As seen in Table 1, both average SES and average
LOCUS were significantly positively related to achievement, and %MINORITY was negatively
related. In this analysis, %LUNCH was not a significant predictor of average achievement.

Multilevel analysis. In order to perform the multilevel analysis, a true multilevel analysis
was performed via HLM, in which the respective level 1 and level 2 variables were specified
appropriately. Note also that all level 1 predictors were centered at the group mean, and all
level 2 predictors were centered at the grand mean. The resulting model demonstrated
goodness of fit (Chisquare for change in model fit =4231.39, 5 df, p < .0001). this analysis
reveals significant positive relationships between achievement and the level 1 predictors (SES
and LOCUS), and strong negative relationships between achievement and the level 2
predictors (%MINORITY and %LUNCH). Further, the analysis revealed significant
interactions between SES and both level 2 predictors, indicating that the slope for SES gets
weaker as %LUNCH and as %MINORITY increases. Also, there was an interaction between
LOCUS and %MINORITY, indicating that as %MINORITY increases, the slope for LOCUS
weakens. There is no clearly equivalent analogue to R and Rsquare available in HLM.

Comparison of the Three Analytic Strategies and Conclusions



For the purposes of this discussion, we will assume that the third analysis represents the best
estimate of what the "true" relationships are between the predictors and the outcome.
Unstandardized regression coefficients (Bs in OLS, betas and gammas in HLM) were compared
statistically via procedures outlined in Cohen and Cohen (1983).

In examining what is probably the most common analytic strategy for dealing with data such
as these, the disaggregated analysis provided the best estimates of the level 1 effects in an OLS
analysis. However, it significantly overestimated the effect of SES, and significantly and
substantially underestimated the effects of the level 2 effects. The standard errors in this
analysis are generally lower than they should be, particularly for the level 2 variables.

In comparison, the aggregated analysis overestimated the multiple correlation by more than
100%, overestimated the the regression slope for SES by 79% and for LOCUS by 76%, and
underestimated the slopes for %MINORITY by 32% and for %LUNCH by 98%.

These analyses reveal the need for multilevel analysis of multilevel data. Neither OLS analysis
accurately modeled the true relationships between the outcome and the predictors.
Additionally, HLM analyses provide other benefits, such as easy modeling of crosslevel
interactions, which allows for more interesting questions to be asked of the data. With nested
and hierarchical data common in the social and other sciences, and with recent developments
making HLM software packages more userfriendly and accessible, it is important for
researchers in all fields to become acquainted with these procedures.
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