SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Absorption and storage of hydrogen in solids - NFPL218
Title: Absorpce a skladování vodíku v pevných látkách
Guaranteed by: Department of Low Temperature Physics (32-KFNT)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. Mgr. Jakub Čížek, Ph.D.
RNDr. Petr Hruška, Ph.D.
Aim of the course -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (19.04.2024)

The aim of the course is to gain basic knowledge of physical and chemical processes taking place during hydrogen absorption in solids. The student will also learn about hydrogen storage in solids and the use of hydrogen as a storable energy carrier.

Course completion requirements -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (19.04.2024)

oral exam and credit

Literature -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (20.04.2024)

G. Alefeld, J. Völkl (eds.), Hydrogen in Metals I, Basic Properties, Springer-Verlag, Berlin 1978

G. Alefeld, J. Völkl (eds.), Hydrogen in Metals II, Application-Oriented Properties, Springer-Verlag, Berlin 1978

A. Pundt, R. Kirchheim, Hydrogen in Metals, Microstructural Aspects, Annu. Rev. Mater. Res. 36 (2006) 555-608.

A. Züttel, A. Remhof, A. Borgschulte, O. Friedrichs, Hydrogen: the future energy carrier, Phil. Trans. R. Soc. A 368 (2010) 3329-3342.

D.J. Durbin, C. Malardier-Jugroot, Review of hydrogen storage techniques for on board vehicle applications, Int. J. Hydrogen Energy 38 (2013) 14595-14617.

J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, S. Liao, Current research trends and perspectives on

materials-based hydrogen storage solutions: A critical review, Int. J. Hydrogen Energy 42 (2017) 289-311.

P. Modi, K.-F. Aguey-Zinsou, Room Temperature Metal Hydrides for Stationary and Heat Storage

Applications: A Review, Front. Energy Res. 9 (2021) 616115.

R.R. Shahi, A.K. Gupta, P. Kumari, Perspectives of high entropy alloys as hydrogen storage materials, Int. J. Hydrogen Energy 48 (2023) 21412-21428.

Teaching methods -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (19.04.2024)

lecture and laboratory work

Requirements to the exam -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (20.04.2024)

• obtaining a credit is a condition for taking the exam

• active participation in laboratory work is a condition for obtaining credit

• the exam is oral, the scope of required knowledge corresponds to the syllabus of the lecture in the scope presented in the lecture

Syllabus -
Last update: prof. Mgr. Jakub Čížek, Ph.D. (20.04.2024)

Hydrogen and its properties

• H2 molecule

• isotopes of hydrogen

• chemical reactions of hydrogen

Interaction of hydrogen with solids

• interstitial solid solution of hydrogen in solids

• Sievert's law

• metal-hydrogen phase diagram

• pressure-concentration isotherms

• Van’t Hoff plot

• chemisorption

• physisorption

• hydrogen adsorption on surfaces

• methods of hydrogen loading

  • loading from the gas phase
  • electrochemical charging

• methods of measurement of hydrogen concentration

  • combustion elemental analyzer
  • Sievert volumetric analyzer
  • neutron activation analysis
  • nuclear reaction analysis (NRA)
  • secondary ion mass spectroscopy (SIMS)

• diffusion of hydrogen in solids

  • nuclear magnetic resonance (NMR)

Hydrides

• types of interstitial sites in crystal lattice

• elastic deformation of the crystal lattice caused by hydrogen

• thermodynamics of hydride formation

• basic types of metal-hydrogen phase diagrams

  • Pd-H system
  • Nb-H system
  • Y-H and Gd-H system

• complex hydrides

• methods of hydride characterization

  • thermal analysis and thermogravimetry
  • X-ray and neutron diffraction
  • electron microscopy
  • Mössbauer spectroscopy

Hydrogen interaction with lattice defects

• hydrogen trapping in vacancies

• hydrogen segregation on dislocations

• hydrogen trapping at grain boundaries

• thermodynamic concept (surfactants and defectants)

• defects created by hydrogen

  • hydrogen induced vacancies
  • emission of dislocations during hydride formation and decomposition

• hydrogen-induced embrittlement

• study of hydrogen interaction with defects

  • thermal desorption spectroscopy
  • positron annihilation
  • muon spectroscopy

Hydrogen as a future fuel and energy carrier

• hydrogen cycle

• methods of hydrogen production

• hydrogen technologies

• fuel cells

• stationary and mobile hydrogen storage

• hydrogen storage technologies

  • compressed hydrogen gas
  • liquefied hydrogen
  • solid hydrides

Prospective materials for hydrogen storage

• hydrides of intermetallic alloys AB, AB2, A2B, AB5

• Allanate salts of I and II groups

• tetrahydroborates

• metal-organic frameworks (MOF)

• hydrides of high entropy alloys

• nanocrystalline hydrides

Laboratory work

• measurement of hydrogen content in a solid sample using a combustion elemental analyzer

• volumetric measurement of hydrogen absorption and desorption kinetics and P-C isotherms

• thermal desorption analysis and thermogravimetry

• electrochemical doping with hydrogen, measurement of electrochemical potential

• study of hydrogen interaction with defects using positron annihilation

• analysis of fuel cell

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html