SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Physics of the Solar System - NAST020
Title: Fyzika sluneční soustavy
Guaranteed by: Astronomical Institute of Charles University (32-AUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information: http://sirrah.troja.mff.cuni.cz/~mira/fyzika_malych_teles/
Note: you can enroll for the course repeatedly
Guarantor: doc. Mgr. Miroslav Brož, Ph.D.
Classification: Physics > Astronomy and Astrophysics
Annotation -
Last update: prof. RNDr. David Vokrouhlický, DrSc. (10.01.2019)
The origin and evolution of planetary systems, the Solar System, including small bodies. Hydrodynamics of protoplanetary disks, radiometry, dust accretion, planetesimals and embryos, migration of planets, moons and tides, rings, asteroids, Yarkovsky effect, asteroid collisions, observed families, trans-Neptunian bodies, comets, dust, fireballs and meteors, meteorites, impacts and craters, volcanism.
Course completion requirements -
Last update: prof. RNDr. David Vokrouhlický, DrSc. (11.06.2019)

Oral examination.

Literature -
Last update: doc. Mgr. Miroslav Brož, Ph.D. (25.09.2020)

in case of distant learning, via Zoom https://cesnet.zoom.us/j/6079238231

Bertotti, B., Farinella, P., Vokrouhlický, D.: Physics of the Solar System. Dordrecht: Kluwer Academic Publishers, 2003. ISBN 1402014287.

de Pater, I., Lissauer, J. J.: Planetary Sciences. Cambridge: Cambridge University Press, 2010. ISBN 9780521853712.

Michel, P., DeMeo, F. A., Bottke, W. F. (eds.): Asteroids IV. Tuscon: The University of Arizona Press, 2015. ISBN 9780816532131.

Oswalt, T. D., French, L. M., Kalas, P. (eds.): Planets, Stars and Stellar Systems, Volume 3: Solar and Stellar Planetary Systems. Dordrecht: Springer, 2013. ISBN 9789400756052.

Armitage, P. J.: Astrophysics of Planet Formation. Cambridge: Cambridge University Press, 2010. ISBN 9780521887458.

Murray, C. D., Dermott, S. F.: Solar System Dynamics. Cambridge: Cambridge University Press, 1999. ISBN 0521575974.

Teaching methods - Czech
Last update: T_AUUK (31.03.2008)

Přednáška.

Requirements to the exam - Czech
Last update: doc. Mgr. Miroslav Brož, Ph.D. (06.10.2017)

Zkouška je ústní, sestávající ze 3 obsáhlejších otázek.

Požadavky odpovídají syllabu, resp. základní učebnici Brož a Šolc (2011), v tom rozsahu, který byl prezentován na přednášce. Na přednášce je ovšem možné zařadit jednu nebo více nových pokročilejších kapitol. Známka se stanovuje dle správnosti nebo chybnosti odpovědí, včetně doplňujících otázek.

Syllabus -
Last update: prof. RNDr. David Vokrouhlický, DrSc. (10.01.2019)
3 Physics of the Solar System

3.1 Hydrodynamics of protoplanetary disks

3.1.1 Magnetohydrodynamics with radiation transfer, Euler description

3.1.2 A role of particles and other physical effects

3.1.3 A relation between Euler and Lagrange formalisms

3.1.4 Kelvin-Helmholtz instability

3.1.5 Rayleigh-Taylor instability

3.1.6 Magneto-rotational instability

3.1.7 Streaming instability

3.1.8 Gravitational instability

3.1.9 Initial and boundary conditions

3.1.10 Formalism in program Pluto

3.1.11 Finite volume method (FVM)

3.1.12 Adaptive mesh refinement and multiprocessor computations

3.2 Dust accretion

3.2.1 Condensation of gas

3.2.2 Collisional growth of particles

3.2.3 Settlement towards the mid-plane of the disk

3.2.4 Spiralling due to gas drag

3.2.5 Turbulence

3.3 Planetesimals and embryos

3.3.1 Collisional growth of planetesimals up to planetary embryos

3.3.2 Gaseous and ice giant - gravitational collapse

3.3.3 Disappearance of the gas

3.3.4 Terrestrial planets - collisions of embryos

3.3.5 Differentiation

3.4 Migration of planets

3.4.1 Types of migration

3.4.2 Migration in the gas disk

3.4.3 Migration in the planetesimal disk and close encounters

3.4.4 Effects on primordial populations of small bodies

3.5 Moons and tides *

3.5.1 Gravitational tidal force

3.5.2 Earth-Moon

3.5.3 Moon-Earth

3.5.4 Earth-Sun

3.5.5 Neptune-Triton

3.5.6 Mars-Phobos

3.5.7 Pluto-Charon, binary asteroids

3.5.8 Mercury-Sun, Venus-Sun

3.5.9 Jupiter, Io and Europa

3.6 Rings *

3.6.1 Roche limit

3.6.2 Collisions in the ring

3.6.3 Gossamer rings of Jupiter

3.6.4 Main rings of Saturn

3.6.5 Uranus and Neptune rings

3.7 Asteroids

3.7.1 Nomenclature

3.7.2 Orbits

3.7.3 Light curves

3.7.4 Spectra and colours

3.7.5 Internal structure

3.7.6 Near-Earth objects

3.7.7 Binary asteroids

3.7.8 Asteroid families

3.7.9 Yarkovsky effect

3.8 Hydrodynamics of asteroid collisions

3.8.1 Lagrange formalism

3.8.2 Elasticity, plasticity and fractures

3.8.3 Smoothed-particle method (SPH)

3.8.4 Alternative expressions for spatial derivatives

3.8.5 Kernel or smoothing function

3.8.6 Artificial viscosity

3.8.7 K-d tree method

3.8.8 Multipole development

3.8.9 Initial and boundary conditions

3.8.10 Fragmentation phase

3.8.11 Reaccumulation phase

3.8.12 Scaling law for targets

3.9 Trans-Neptunian bodies

3.9.1 Orbital structures

3.9.2 Physical characteristics

3.10 Comets

3.10.1 Nomenclature

3.10.2 Activity

3.10.3 Gas

3.10.4 Dust

3.10.5 Nucleus

3.10.6 Physical evolution of comets

3.10.7 Magnetosphere

3.10.8 Orbital classification of comets

3.10.9 Oort cloud and long-period comets

3.11 Dust *

3.11.1 Zodiacal light and other observations of the dust

3.11.2 Asteroidal dust bands

3.11.3 Cometary dust trails

3.12 Fireballs and meteors

3.12.1 Atmospheric trajectory of the fireball

3.12.2 Deceleration and ablation

3.12.3 Meteor showers

3.12.4 Radar observations

3.12.5 Meteor spectra

3.13 Meteorites

3.13.1 Known falls and fields

3.13.2 Classification of meteorites

3.13.3 Isotopic ratios

3.13.4 Radiometric methods

3.13.5 Meteorites-asteroids associations

3.13.6 Transport of meteorites to the Earth

3.14 Impacts and craters *

3.14.1 Morphology of Ries and Steinheim craters

3.14.2 Processes during an impact

3.14.3 Moldavites and other tectites

3.14.4 Rankine-Hugoniot equations

3.14.5 Age determination of surfaces using cratering

3.14.6 A relation to mass extinctions

3.15 Volcanism *

3.15.1 Io

3.15.2 Triton

3.15.3 Europa

3.15.4 Enceladus

3.15.5 Differentiated asteroids

3.15.6 A comparison to planets

3.15.7 Classifications of eruptions

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html