SubjectsSubjects(version: 945)
Course, academic year 2023/2024
   Login via CAS
Physics II - MC260P35N
Title: Fyzika II
Czech title: Fyzika II
Guaranteed by: Department of Physical and Macromolecular Chemistry (31-260)
Faculty: Faculty of Science
Actual: from 2020
Semester: winter
E-Credits: 6
Examination process: winter s.:
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Is provided by: MC260P120
Explanation: Kód MFF FOE012
Guarantor: prof. RNDr. Marek Procházka, Ph.D.
Teacher(s): doc. RNDr. Peter Košovan, Ph.D.
doc. Ing. Zuzana Limpouchová, CSc.
doc. Ing. Petr Praus, CSc.
prof. RNDr. Marek Procházka, Ph.D.
Pre-requisite : MC260P34, MS710P52, MS710P53
Annotation -
Last update: ZUSKOVA (16.06.2003)
Physics II

The second part of the introductory physics course for chemistry students (Faculty of Sciences).

The course contains fundamentals of electric and magnetic fields, electromagnetic induction, linear direct and alternating current circuits, Maxwell's equations, electromagnetic waves, fundamentals of wave and geometrical optics.


Literature - Czech
Last update: doc. Ing. Zuzana Limpouchová, CSc. (27.09.2013)

Stručné podklady k přednášce: viz systém Moodle

D.Halliday, R.Resnick, J.Walker: Fyzika. Část 3. Elektřina a magnetismus, Část 4. Elektromagnetické vlny - optika - relativita. VUT v Brně - nakladatelství VUTIUM a nakladatelství PROMETHEUS Praha, 2000.

B.Sedlák, I.Štoll: Elektřina a magnetismus. Academia Praha, Vydavatelství Karolinum 1993

B.E.A.Saleh, M.C.Teich: Základy fotoniky, sv. 1 a 2. Matfyzpress 1994

E.Klier: Optika. Univerzita Karlova Praha 1978

Requirements to the exam - Czech
Last update: prof. RNDr. Marek Procházka, Ph.D. (25.09.2020)

Výuka v ZS 2020/21 začne v rozvrhovaném čase online, interaktivním způsobem (=prezenčně) za využití videokonferenčních nástrojů (Google Meet, MS Teams aj.). 

Zápočet bude udělen za získání dostatečného počtu bodů. Body lze získat za správně vyřešené příklady v testech (dva testy během semestru a dva opravné testy během zkouškového období) nebo za řešení náročnějších příkladů během semestru. Podrobnější informace jsou v systému Moodle. Zkouška je pouze ústní. Nutnou podmínkou pro konaní zkoušky je udělení zápočtu. Student dostane u zkoušky 3 otázky: jednu z optiky, jednu z elektřiny a jednu z magnetismu. Na přípravu má student asi 45 minut. Seznam otázek je k dispozici v systému Moodle.

Syllabus -
Last update: prof. RNDr. Marek Procházka, Ph.D. (17.08.2020)

1. The Electrostatic Field

Basic properties of electric charge, electrostatic field; Coulomb's and Gauss's laws in integral and differential form; potential ?, electric dipoles, Poisson's and Laplace's equations; conductors in an electrostatic field; capacitance, field in a parallel plate capacitor; energy stored in a capacitor.

2. The Electric Field in a Dielectric

Electric polarization and displacement; parallel plate capacitor with a dielectric; Clausius-Mossotti formula.

3. Electric Current

Electric current, current density; Ohm's law; conductivity, drift velocity, mobility; temperature dependence of the conductivity of metals and semiconductors. Direct current circuits; electromotive force; Kirchhoff's rules, electric current power.

4. The Magnetic Field

Stationary magnetic field; the Lorentz force, Biot-Savart and Ampere's law. Magnetic flux. The field due to a long, straight wire; the field of a circular loop; a long solenoid; toroid. Magnetic dipole.

5. A Charged Particle in a Uniform Magnetic Field

The motion of a charged particles in uniform magnetic fields. Cyclotron frequency, the Hall effect, a mass spectrometer. A current loop in uniform and non-uniform magnetic fields. The potential energy of a loop in a magnetic field.

6. The Magnetic Field Inside the Material

The Ampere's current loops, vectors B,M,H; Ampere's law for magnetic field intensity H. Magnetic properties of matter: diamagnetic, paramagnetic, ferro- and antiferromagnetic materials, superconductors; the magnetic field energy.

7. Electromagnetic Induction

Electromagnetic induction, Faraday's law, Lenz's law; relation between the Lorentz force and electromagnetic induction. Self-inductance and mutual inductance, self-inductance of a long solenoid.

8. Alternating Current Circuits

Transient phenomena in LR, CR, series and parallel RLC circuits; heavily damped, critically damped and lightly damped circuits, natural angular frequency. Forced oscillations in a series RLC circuit; resonance; quality factor. Phasor diagrams in the complex plane. Power in A.C. circuits; power factor.

9. Maxwell's Equations

Maxwell's equations in integral and differential form; boundary conditions.

10. Electromagnetic Waves

Wave equation in free space. Undamped homogeneous plane monochromatic wave; spherical wave. Polarization. Energy density, energy flow, the Poynting vector, intensity of the radiation.


11. Interference

Interference of a two monochromatic waves; Young's double-slit experiment; Michelson interferometer. Interference on a thin dielectric film; Fabry-Perot interferometer; interference fringers.

12. Diffraction

Diffraction of the radiation. Fresnel diffraction, Fresnel zones. Fraunhofer diffraction. Consequences for optical systems.
Fraunhofer diffraction from a slit, interference on a system of slits. The diffraction grating in transmittance and reflectance; monochromator. Theoretical limit for spectral resolution.

13. Geometrical Optics

Plane wave on a boundary of two isotropic dielectrics; reflection and refraction of the wave. Fresnel's formulae, graphic illustration; Brewster's angle; polarization by reflection; total reflection. 

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html