|
|
|
||
High energy radiation interactions with matter. Basic detection methods. Detector types.
Momentum measurement. Track and vertex determination. Silicon detectors.
Large detection systems. Data acquisition, triggger.
Linear and circular accelerators. Colliders.
Last update: Krtička Milan, prof. Mgr., Ph.D. (16.01.2019)
|
|
||
Zkouška je prováděna ústní formou. Student dostane po jedné otázce z každého ze tří okruhů:
Požadavky odpovídají sylabu předmětu v rozsahu prezentovaném na přednášce. Last update: Doležal Zdeněk, prof. RNDr., Dr. (07.09.2020)
|
|
||
C. Grupen, B. Shwartz, Particle Detectors (Cambridge University Press 2008) W. R. Leo, Technics for nuclear and particle physics (Springer, 1994) S. Tavernier, Experimental Techniques in Nuclear and Particle Physics (Springer 2010) H. Wiedemann: Particle Accelerator Physics, Springer-Verlag, Berlin Heidelberg 1993 E. Wilson: An Introduction to Particle Accelerators, Oxford University Press, Oxford 2001 Last update: Krtička Milan, prof. Mgr., Ph.D. (16.01.2019)
|
|
||
Zkouška je prováděna ústní formou. Student dostane po jedné otázce z každého ze tří okruhů:
Požadavky odpovídají sylabu předmětu v rozsahu prezentovaném na přednášce. Last update: Doležal Zdeněk, prof. RNDr., Dr. (07.09.2020)
|
|
||
High energy radiation interactions with matter. Ionisation, radiation losses, shower generation, Cherenkov and transition radiation. Interactions of neutrons and neutrinos. Basic detecting methods revision. Gas detectors. Semiconductor detectors. Scintillators. Momentum measurement. Tracking methods. Silicon strip and drift detectors. Gas tracking chambers (drift, TPC). Muon detectors. Vertex determination. Silicon pixel detectors hybrid and monolithic. CCDs. Energy measurement. Electromagnetic and hadron calorimeters. Energy resolution. Particle identification. Cherenkov detectors. Neutrino detectors. Cosmic rays and their detection. Large detector systems. Choice of their parameters. Data Acquisition. Trigger. Linear accelerators (electrostatic and resonance). Phase stability. Circular Accelerators: betatron, microtron, cyclotron. Weak focusing. Electron and proton synchrotron. Strong focusing. Longitudinal synchronisation. Colliders. Luminosity. Last update: Krtička Milan, prof. Mgr., Ph.D. (16.01.2019)
|