SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Classic works of mathematics education - OPNM3M015A
Title: Classic works of mathematics education
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2023
Semester: winter
E-Credits: 5
Examination process: winter s.:
Hours per week, examination: winter s.:1/2, C [HT]
Extent per academic year: 0 [hours]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Is provided by: OKNM3M015A
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: prof. RNDr. Ladislav Kvasz, DSc., Dr.
Is interchangeable with: OKNM3M015A
Annotation -
The aim of the course is to get the students acquainted with some of the classical works in mathematics education. The course has the form of a seminar, where students will read and discuss selected passages from the works of George Polya, Imre Lakatos and Hans Freudenthal. We will begin with the book of George Polya: Mathematical Discovery, On Understanding, Learning, and Teaching Problem Solving and we will discuss the concept of heuristics. Second will be the book of Imre Lakatos(1972): Proofs and Refutations and we will focus on creating concepts and definitions. As a third work we will discuss Hans Freudenthal (1972): Mathematics as an Educational Task, in terms of the relationship between mathematics and the real world. Finally, we will return to the past of didactics of mathematics to the book of Felix Klein (1908): Elementary Mathematics from Advanced Standpoint.
Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (10.09.2024)
Aim of the course - Czech

Studující bude mít základní představu o klasických dílech autorů George Polya, Imre Lakatos a  Hans Freudenthal a bude schopen vysvětlit rozdíly mezi něma.

Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (17.09.2024)
Descriptors - Czech
Celková časová zátěž studenta 135,0
   
Přidělené kredity 5
Zakončení Z
   
Přímá výuka  
   
Cvičení: 15 hod
   
Příprava na výuku  
   
Doba očekávané přípravy na 1 cvičení 60 minut
Samostudium literatury (za semestr) 45 hodin
Práce se studijními materiály (za semestr) 20 hodin
Plnění průběžných úkolů (za semestr) 20 hodin
   
Plnění předmětu  
Seminární práce 20 hodin
Příprava na zápočet 6 hodin
   
Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (10.09.2024)
Literature

Freudenthal, H. (1972): Mathematics as an Educational Task, Springer.

Klein, F. (1908): Elementary Mathematics from an Advanced Standpoint.

Lakatos, I. (1972): Proofs and Refutations. Cambridge University Press.

Polya, G. Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving.

Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (10.09.2024)
Requirements to the exam

Every student will present an exposition of the fundamental ideas of a particular chapter of the discussed books.

The chapters will be agreed upon on the first seminar.

The final evaluation will take into consideration this exposition as well

as his activity during the discussion of the presentations of other students.

Students, who for some reasons will not be able to have their presentations

in person will send in a written essay in English, having 5 to 10 pages.

Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (10.09.2024)
Syllabus

In the course we will read and discuss three books:

George Polya: How to solve it?

           1. Polya's general approach to mathematics education as problem solving

           2. Polya's set of questions, which a teacher should ask a student in order to help him

           3. Polya's concept of analogy and of heuristics in mathematics education

Imre Lakatos: Proofs and Refutations.

          4. Lakatos' approach to mathematics education as conceptual development

           5. Lakatos' fundamental notions as monster barring, lemma incorporation

           6. The possibility to transfer these notions to other areas than theory of polyhedra

Hans Freudenthal: China Lectures

          7. Freudenthal's approach to mathematics education as exploratory activity

          8. The basic notions of Freudenthal's realistic mathematics

          9. Discussion of basic mathematical notions as introduced by Freudenthal

         10. A comparison of the three approaches - their differences and common features

Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (10.09.2024)
Learning outcomes - Czech

Studující vysvětlí hlavní principy vybraných konstruktivistických přístupů k vyučování matematice. Studující s porozuměním a pomocí konkrétních příkladů bude schopen ilustrovat vyučování chápané jako řešení problémů (GP), jako osvojování si pojmů (IL) a jako řízené znovuobjevování (HF).

Last update: Kvasz Ladislav, prof. RNDr., DSc., Dr. (17.09.2024)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html