|
|
|
||
The goal is to introduce the basic notions and problems of plane geometry. The course aims at systematization and development of secondary school knowledge. It helps the students understand the connection of geometry and real world more deeply.
Last update: STEHLIKO (27.10.2019)
|
|
||
The goal is to introduce the basic notions and problems of plane geometry. The course aims at systematization and development of secondary school knowledge. It helps the students understand the connection of geometry and real world more deeply. Last update: Jančařík Antonín, doc. RNDr., Ph.D. (15.07.2017)
|
|
||
K předmětu jsou všechny materiály umisťovány do kurzu v LMS Moodle s názvem Syntetická geometrie I (https://dl1.cuni.cz/course/view.php?id=4217) a na webových stránkách https://www2.karlin.mff.cuni.cz/~zamboj/SG1.html. V LMS Moodle budou průběžně zveřejňovány studijní materiály, videa s výkladem a pracovní listy formou úkolu. V čase dle rozvrhu budou probíhat semináře synchronní formou. Odkaz na seminář bude zveřejněn v prostředí LMS Moodle. Last update: Zamboj Michal, Mgr., Ph.D. (01.10.2020)
|
|
||
BOČEK, L., ZHOUF, J.: Planimetrie. Praha : PedF UK 2009. ISBN 978-80-7290-594-2 POMYKALOVÁ, E.: Planimetrie. Matematika pro gymnázia. Praha : Prometheus 2005. ISBN 978-80-7196-358-5 KUŘINA, F. Umění vidět v matematice. SPN, 1990, ISBN 80-04-23753-3 KUŘINA, F.: 10 geometrických transformací. Praha : Prometheus 2002. ISBN 80-7196-231-7 KUŘINA, F. 10 pohledů na geometrii. Praha: Matematický ústav AV ČR, 1996, 249 s. ISBN 80-85823-21-7 SEKANINA, M., Geometrie. 1,2. Praha: SPN, 1988 Last update: Jančařík Antonín, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
Přednáška a cvičení. Last update: Jančařík Antonín, doc. RNDr., Ph.D. (15.07.2017)
|
|
||
The course is taught only in Czech, so the requirements are only in Czech. Last update: Jančařík Antonín, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
Triangles. Quadrilaterals. Cyclic and tangential quadrilaterals. Circle. Circle power. Radical line. Euclidan constructions. Constructions using other tools. Sets of points of given properties. Definition and basic properties of geometric congruences in plane. Composition of geometric congruences. Classification of geometric congruences in plane. Direct and indirect geometric congruences. Group of geometric congruences. Definition and basic properties of homothecy. Similitude ration and its properties. Composition of homothecies. Monge's theorem. Circle in homothecy. Group of homothecies. Definition and basic properties of similarity. Decomposition of direct and indirect similarity (processes of construction). Similarity invariants (processes of construction). Classification of similarities in plane. Menelaos' and Ceva's theorem. Pappus's theorem. Double similitude ratio and its properties. Circle inversion (basic properties Apollonius' problems). Principles of axiomatic system conception of geometry. Last update: Holíková Marie, Mgr., Ph.D. (08.09.2017)
|