SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Synthetic geometry I - OPBM2M102A
Title: Syntetická geometrie I
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2022
Semester: winter
E-Credits: 3
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, C [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Is provided by: OPBM3M012A
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: Mgr. Marie Holíková, Ph.D.
Is pre-requisite for: OPBM2M112A, OPBM2M106A
Annotation -
The goal is to introduce the basic notions and problems of plane geometry. The course aims at systematization and development of secondary school knowledge. It helps the students understand the connection of geometry and real world more deeply.
Last update: STEHLIKO (27.10.2019)
Aim of the course -

The goal is to introduce the basic notions and problems of plane geometry. The course aims at systematization and development of secondary school knowledge. It helps the students understand the connection of geometry and real world more deeply.

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (15.07.2017)
Descriptors - Czech

K předmětu jsou všechny materiály umisťovány do kurzu v LMS Moodle s názvem Syntetická geometrie I (https://dl1.cuni.cz/course/view.php?id=4217) a na webových stránkách https://www2.karlin.mff.cuni.cz/~zamboj/SG1.html.

V LMS Moodle budou průběžně zveřejňovány studijní materiály, videa s výkladem a pracovní listy formou úkolu. 

V čase dle rozvrhu budou probíhat semináře synchronní formou. Odkaz na seminář bude zveřejněn v prostředí LMS Moodle.

Last update: Zamboj Michal, Mgr., Ph.D. (01.10.2020)
Literature -

BOČEK, L., ZHOUF, J.: Planimetrie. Praha : PedF UK 2009.  ISBN 978-80-7290-594-2

POMYKALOVÁ, E.: Planimetrie. Matematika pro gymnázia. Praha : Prometheus 2005.  ISBN 978-80-7196-358-5

KUŘINA, F. Umění vidět v matematice. SPN, 1990, ISBN 80-04-23753-3

KUŘINA, F.: 10 geometrických transformací. Praha : Prometheus 2002.  ISBN 80-7196-231-7

KUŘINA, F. 10 pohledů na geometrii. Praha: Matematický ústav AV ČR, 1996, 249 s. ISBN 80-85823-21-7

SEKANINA, M., Geometrie. 1,2. Praha: SPN, 1988

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (29.10.2019)
Teaching methods - Czech

Přednáška a cvičení.

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (15.07.2017)
Requirements to the exam -

The course is taught only in Czech, so the requirements are only in Czech.

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (29.10.2019)
Syllabus -

Triangles. Quadrilaterals. Cyclic and tangential quadrilaterals. Circle. Circle power. Radical line. Euclidan constructions. Constructions using other tools. Sets of points of given properties. Definition and basic properties of geometric congruences in plane. Composition of geometric congruences. Classification of geometric congruences in plane. Direct and indirect geometric congruences. Group of geometric congruences. Definition and basic properties of homothecy. Similitude ration and its properties. Composition of homothecies. Monge's theorem. Circle in homothecy. Group of homothecies. Definition and basic properties of similarity. Decomposition of direct and indirect similarity (processes of construction). Similarity invariants (processes of construction). Classification of similarities in plane. Menelaos' and Ceva's theorem. Pappus's theorem. Double similitude ratio and its properties. Circle inversion (basic properties Apollonius' problems). Principles of axiomatic system conception of geometry.

Last update: Holíková Marie, Mgr., Ph.D. (08.09.2017)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html