|
|
|
||
Basic notions of set theory. Cardinality of a set, countable and uncountable sets. Cardinal and ordinal numbers, Zermelo's axiom of choice and its consequences. Cantor's discontinuum and its properties. Peano's curve.
Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
|
|
||
The aim of the course is a refinement of the notion of infinity by means of Cantorian set theory. Examples from arithmetic and geometry which offer a deeper insight into the notion of infinity (such as Cantor's discontinuum, Peano's curve) will be presented. Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
|
|
||
Alexandrov, P. S.: Úvod do teorie množin a funkcí
Sierpinski, W.: Cardinal and ordinal numbers Balcar, B.- Štěpánek, P.: Teorie množin Bukovský, L.: Množiny a všeličo okolo nich Rohlíčková, I.: Aritmetika konečných a nekonečných množin Bečvář, J.a kol.: Seznamujeme se s množinami Pospíšil, B.: Nekonečno v matematice Vilenkin, N. J.: Nekonečné množiny Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
|
|
||
Lecture and seminar. Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
|
|
||
Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
|