SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Number fields and number theory for teachers - OKBM3M033A
Title: Číselné obory a teorie čísel pro učitele
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2022
Semester: winter
E-Credits: 4
Examination process: winter s.:
Hours per week, examination: winter s.:0/0, C [HT]
Extent per academic year: 10 [hours]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: combined
Teaching methods: combined
Is provided by: OKBM4M033A
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: doc. RNDr. Antonín Jančařík, Ph.D.
Annotation - Czech
Cílem předmětu je seznámit budoucí učitele se základy teorie čísel. Po absolvování předmětu budou studenti rozumět základním pojmům a nástrojům teorie čísel (modulární aritmetika, řešení lineárních a kvadratických rovnic), zvládat postupy pro řešení úloh, se kterými se mohou setkat ve své praxi (včetně úloh MO), a umět uvést příklady využití poznatků z teorie čísel v různých aplikacích.
Last update: Beran Filip, JUDr. Mgr. (11.09.2023)
Literature - Czech

Hlavní zdroje:

Křížek, M., Somer, L. a Šolcová, A. Kouzlo čísel: od velkých objevů k aplikacím. Academia, 2018.

Stanovský, D. Základy algebry. MatfyzPress, 2010.

Stillwell, J.  Elements of Number Theory. Springer, 2003.

BP Michal, J. Číselné obory a soustavy. PedF, 2018. http://hdl.handle.net/20.500.11956/104121

BP Kaňáková, N. Lineární diofantické rovnice a kongruence. PedF, 2022. http://hdl.handle.net/20.500.11956/175503

Další materiály sdílené prostřednictvím Moodlu.

Možné doplňkové zdroje:

Koblitz, N. A Course in Numer Theory and Cryptography. Springer-Verlag, 1998. Rosen, H. Elementary Number Theory and Its Applications. Addison-Wesley, 2000. Masáková, Z., Pelantová, E.: Teorie čísel. ČVUT, 2017. Harminc, M.: Elementární teorie čísel. PedF UK, 2015.

Last update: Beran Filip, JUDr. Mgr. (27.10.2022)
Syllabus - Czech

(1) Úvodní motivace + Nepoziční a poziční číselné soustavy.

(2) Kritéria dělitelnosti a jejich odvození.

(3) Kongruence a modulární aritmetika.

(4) Lineární kongruence a diofantické rovnice a jejich soustavy.

(5) Od nejmenšího společného násobku k čínské větě o zbytcích.

(6) Polynomiální a exponenciální kongruence: Malá Fermatova věta, Eulerova funkce a Eulerova věta, grupová struktura.

(7) Kvadratické kongruence a diofantické rovnice: kvadratické zbytky, Legendrův a Jacobiho symbol, Gaussova věta o kvadratické reciprocitě.

(8) Aplikace TČ v šifrování.

(9) Použití TČ ve škole a v MO.

+ Další témata dle času a zájmu studentů.

Last update: Beran Filip, JUDr. Mgr. (11.09.2023)
Course completion requirements - Czech

Zápočet bude udělen za splnění domácích úloh a docházky.

Domácí úlohy: Dvě série zadané a odevzdané v průběhu semestru. Úspěšnost v každé sérii alespoň 80 %. Hodnoceno při závěrečném kolokviu.

Docházka: Alespoň 80 %. V odůvodněných případech lze vyšší absenci nahradit dodatečnými domácími úlohami.

Last update: Beran Filip, JUDr. Mgr. (11.09.2023)
Learning resources - Czech

Ke kurzu je vytvořen kurz v LMS Moodle - https://dl1.cuni.cz/course/view.php?id=7773

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (28.09.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html