SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Logic - OKB2310257
Title: Logika
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2019
Semester: winter
E-Credits: 2
Examination process: winter s.:
Hours per week, examination: winter s.:0/0, C [HS]
Extent per academic year: 4 [hours]
Capacity: unknown / unknown (999)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: prof. RNDr. Ladislav Kvasz, DSc., Dr.
Class: Matematika 1. cyklus - povinné
Is co-requisite for: OKB1310003
Is interchangeable with: OKB1310N02
Annotation -
The course focuses on the basics of classical propositional calculus, its axiomatics, semantics, and methods of inference and proof theory. A brief introduction to modal propositional calculus is also included, and Gödel's theorems (undecidable propositions) are mentioned.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Aim of the course -

The goal is to introduce the basics of classical propositional calculus, especially its axiomatics and semantics, and main characteristics. The practice in inference and proofs is emphasized.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Literature -

Sochor, Klasická matematická logika. Praha : Karolinum 2001.

Peregrin, Logika a logiky. Praha : Academia 2004.

Smullyan, Navěky nerozhodnuto. Praha : Academia 2003.

Barwise, Handbook of Mathematical logic. Nort-Holland, 1977.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Teaching methods -

Seminar.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Requirements to the exam - Czech

Docházka, aktivní účast a seminární práce.

Last update: ZHOUF/PEDF.CUNI.CZ (07.02.2012)
Syllabus -

Proposition. Propositional calculus.

Logic operations and their properties.

Connection to set theory. Boolean algebra.

Mathematical proofs.

Modal propositional logic.

Undecidable propositions - Gödel's theorems.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html