Logic - OKB2310257
|
|
|
||
The course focuses on the basics of classical propositional calculus, its axiomatics, semantics, and methods of inference and proof theory. A brief introduction to modal propositional calculus is also included, and Gödel's theorems (undecidable propositions) are mentioned.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
The goal is to introduce the basics of classical propositional calculus, especially its axiomatics and semantics, and main characteristics. The practice in inference and proofs is emphasized.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Sochor, Klasická matematická logika. Praha : Karolinum 2001. Peregrin, Logika a logiky. Praha : Academia 2004. Smullyan, Navěky nerozhodnuto. Praha : Academia 2003. Barwise, Handbook of Mathematical logic. Nort-Holland, 1977. Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Seminar. Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Docházka, aktivní účast a seminární práce. Last update: ZHOUF/PEDF.CUNI.CZ (07.02.2012)
|
|
||
Proposition. Propositional calculus. Logic operations and their properties. Connection to set theory. Boolean algebra. Mathematical proofs. Modal propositional logic. Undecidable propositions - Gödel's theorems. Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|