|
|
||
The basic course focusing on polynomials and their properties. The gained knowledge and skills belong to the basic elements necessary for further mathematics courses.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Subject aiming to acquaint students with these basic parts of algebra and theoretical arithmetic on which school mathematics is based and which serve as tools for other mathematical disciplines in teacher training. Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
BLAŽEK, J. a kol.: Algebra a teoretická aritmetika 1. Praha: SPN, 1983. KATRIŇÁK, T. a kol.: Algebra a teoretická aritmetika 1. Bratislava, Praha: ALFA, SNTL, 1985. NOVOTNÁ, J. ? TRCH, M.: Algebra a teoretická aritmetika, Sbírka příkladů část 2, Polynomická algebra. 2. vyd. Praha: Karolinum, 2000. DEMLOVÁ, M., NAGY, J.: Algebra. Praha: SNTL, 1985.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Lecture & practice, in some cases supported by the work on computers. Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|
|
||
Ring, integral domain, field. Algebraic and functional definitions of a polynomial. Divisibility of polynomials, reducible and irreducible polynomials. Roots of polynomials. Algebraic equation (in one variable). Greatest common divisor and least common multiple of polynomials, Euclidean algorithm. Derivative of a polynomial, multiplicity of roots. Numerical methods for real roots. Polynomial approximation of a function.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
|