SubjectsSubjects(version: 953)
Course, academic year 2023/2024
   Login via CAS
Complex numbers - OKB2310002
Title: Komplexní čísla
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2022
Semester: summer
E-Credits: 2
Examination process: summer s.:
Hours per week, examination: summer s.:0/0, C [HS]
Extent per academic year: 4 [hours]
Capacity: unknown / unknown (999)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: combined
Teaching methods: combined
Explanation: Rok1
Old code: EG
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: PhDr. Petr Dvořák, Ph.D.
Class: Matematika 1. cyklus - povinné
Classification: Mathematics > Mathematics General
Interchangeability : OB1310011
Is pre-requisite for: OKB1310103, OKB2310254
Annotation -
Complex numbers, operations with c.n., relations of the operations with geometric mappings in the plane. n-th root of a c.n., polygons. Applications. Residue classes, Fermat and Euler theorem.
Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Aim of the course -

The goal is to introduce the geomteric application of complex numbers, and polygons and their properties.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Literature -

§ Hruša,K., Kraemer,E., Sedláček,J.,Vyšín,J.,Zelinka,R. Přehled elementární matematiky. Praha: SNTL, 1994.

§ Ráb,M. Komplexní čísla v elementární matematice.Brno: Vydavatelství MU, 1996. ISBN 80-210-1475-X.

§ Vyšín, J. Vybrané stati z elementární geometrie. Praha: SPN, 1972 (skripta).

§ Vyšín, J. Lineární komplexní funkce. Praha: SNTL,1958.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Teaching methods -

Seminar

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
Requirements to the exam - Czech

Docházka, seminární práce, test.

Last update: STEHLIKO (20.05.2019)
Syllabus -
  • Complex numbers and their geometric representation in the plane.
  • Phylogeny of the concept of a complex number.
  • Transformation of ortonormal coordinates into complex coordinates in the plane (and vice versa).
  • Distance between two points in complex coordinates.
  • Analytic description of a line and a circle in complex coordinates.
  • Congruence.
  • Residue classes.
  • Fermat and Euler theorem.

Last update: JANCARIK/PEDF.CUNI.CZ (04.06.2010)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html