Logic - OKB1310N02
Title: Logika
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2022
Semester: winter
E-Credits: 4
Examination process: winter s.:
Hours per week, examination: winter s.:0/0, Ex [HS]
Extent per academic year: 9 [hours]
Capacity: unknown / unknown (999)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech
Teaching methods: combined
Teaching methods: combined
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
Guarantor: prof. RNDr. Ladislav Kvasz, DSc., Dr.
Class: Matematika 1. cyklus - povinné
Pre-requisite : OKB2310008
Interchangeability : OKB2310257
Opinion survey results   Examination dates   Schedule   Noticeboard   
Annotation -
The course focuses on the basics of classical propositional calculus, its axiomatics, semantics, and methods of inference and proof theory. A brief introduction to exploring logical thinking is also included.
Last update: Zavřel Karel, Mgr. Bc. (07.10.2016)
Aim of the course -

The goal is to introduce the basics of classical propositional calculus, especially its axiomatics and semantics, and main characteristics. The practice in inference and proofs is emphasized.

Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
Literature -

Sochor, Logika pro všechny ochotné myslet. Praha : Karolinum 2011.

Smullyan, Jak se jmenuje tahle knížka? Praha : Mladá fronta 1986 (nebo Praha : Portál 2015).

Bendová, Sylogistika. Praha : Karolinum 1998.

Peregrin, Logika a logiky. Praha : Academia 2004.

Smullyan, Navěky nerozhodnuto. Praha : Academia 2003.

Barwise, Handbook of Mathematical logic. Nort-Holland, 1977.

Last update: Zavřel Karel, Mgr. Bc. (07.10.2016)
Teaching methods -

Seminar.

Last update: JANCARIK/PEDF.CUNI.CZ (27.06.2012)
Requirements to the exam -

The course is taught only in Czech, so the requirements are only in Czech.

Last update: Jančařík Antonín, doc. RNDr., Ph.D. (29.10.2019)
Syllabus -

Syllogism. Syllogistics.

Proposition. Propositional calculus.
Logic operations and their properties.
Connection to set theory. Boolean algebra.
Mathematical proofs.
Modal propositional logic.

Last update: Zavřel Karel, Mgr. Bc. (07.10.2016)