SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Geometry - OEBMM1709Z
Title: Geometry
Guaranteed by: Katedra matematiky a didaktiky matematiky (41-KMDM)
Faculty: Faculty of Education
Actual: from 2024
Semester: both
E-Credits: 6
Hours per week, examination: 1/1, C+Ex [HT]
Capacity: winter:unknown / 15 (999)
summer:unknown / unknown (999)
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English
Teaching methods: full-time
Explanation: Rok2
Additional information: http://prerekvizity se nevyžadují
Old code: GEOM
Note: course can be enrolled in outside the study plan
enabled for web enrollment
priority enrollment if the course is part of the study plan
you can enroll for the course in winter and in summer semester
Guarantor: doc. RNDr. Darina Jirotková, Ph.D.
Mgr. Michal Zamboj, Ph.D.
Teacher(s): Mgr. Michal Zamboj, Ph.D.
Class: Předměty v angličtině - bc.
Předměty v angličtině - mgr.
Classification: Teaching > Mathematics
Pre-requisite : O01310247
Annotation -
The content of the subject is focused on the axiomatic development of geometry as the mathematical theory with the aim to better understand geometrization of the real world. Non-Euclidean geometries, finite projective geometry and projective extension of the real plane will be described.
Last update: Zamboj Michal, Mgr., Ph.D. (24.11.2020)
Descriptors -

online lessons  taught by D. Jirotkové are on Google Meet: https://meet.google.com/uec-vkom-utr?authuser=1

Last update: Jirotková Darina, doc. RNDr., Ph.D. (10.02.2021)
Literature -

Joyce, D. E.: Euclid’s Elements, https://mathcs.clarku.edu/~djoyce/java/elements/elements.html
Byrne, O.:  The First Six Books of the Elements of Euclid, https://www.c82.net/euclid/
Greenberg, M. J.: Euclidean and Non-Euclidean Geometries, New York: W.H. Freeman and Company, 1993
Coxeter, H. Introduction to geometry. New York: Wiley, 1989
Richter-Gebert, J.: Perspectives on Projective Geometry. Springer-Verlag Berlin Heidelberg 2011

Last update: Zamboj Michal, Mgr., Ph.D. (24.11.2020)
Requirements to the exam -

Homework based on the selected literature reading, seminary work on arbitrary geometric topic, oral examination.

Last update: Zamboj Michal, Mgr., Ph.D. (24.11.2020)
Syllabus -

Historic development of geometry.
Elements by Euclid. Axioms of the euclidean geometry.
Elements of Geometry by Hilbert.
Axiomatic development of geometry.
The absolute geometry and its relation to non-euclidean geometries.
Finite geometry.
Projective extension of the real plane.

Last update: Zamboj Michal, Mgr., Ph.D. (24.11.2020)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html