Stochastic Calculus - NSTP058
|
|
|
||
The lecture is devoted to the selected parts of martingale theory, which is useful for introducing of stochastic
integral, to the construction and basic properties of the stochastic integral and to the basic application on pricing
European Call option known as Black-Scholes formula.
Last update: T_KPMS (16.05.2011)
|
|
||
To provide effective and correct theory of Itô processes and basic applications in finance. Last update: T_KPMS (16.05.2011)
|
|
||
Lachout, P: Diskrétní martingaly. Karolinum, Praha, vyjde, 2011 Karatzas K., Shreve S.E: Brownian Motion and Stochastic Calculus. Springer-Verlag, Heidelberg, 1991 Mandl, P: Pravděpodobnostní dynamické modely. Academia, Praha, 1985 Baxter M., Rennie A.: Financial Calculus. Cambridge University Press, Cambridge, 1996 Last update: T_KPMS (16.05.2011)
|
|
||
Lecture + exercises. Last update: T_KPMS (16.05.2011)
|
|
||
Martingales (super/sub), compensators, stopping times, Stopping theorem, maximal inequalities, Wiener process, elementary and L2 integration, Itô processes, Itô formula, Black-Scholes formula.
Last update: T_KPMS (16.05.2011)
|