|
|
|
||
Interval computations provide rigorous bounds for numerical output. For this reasons, it is used in validated
computing with floating-point arithmetic, e.g. in computer-aided proofs of famous math conjectures (The Kepler
Conjecture, The double bubble problem etc.). It gives verified solutions in solving (non)linear systems of equations
and in global optimization.
Remark: The course can be tought once in two years.
Last update: Hladík Milan, prof. Mgr., Ph.D. (07.04.2016)
|
|
||
To obtain credits for tutorials, students need to carry out a certain number of homeworks.
More details can be found at web pages:
http://kam.mff.cuni.cz/~hladik/IA Last update: Hladík Milan, prof. Mgr., Ph.D. (07.10.2019)
|
|
||
E. Hansen, G.W. Walster: Global optimization using interval analysis, Marcel Dekker, 2004.
M. Fiedler et al.: Linear optimization problems with inexact data, Springer, 2006.
L. Jaulin et al.: Applied interval analysis, Springer, 2001.
R.E. Moore, R.B. Kearfott, M.J. Cloud: Introduction to interval analysis, SIAM, 2009.
A. Neumaier: Interval methods for systems of equations, Cambridge University Press, 1990.
A motivational movie: http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/movie_undergraduate.mpg Last update: T_KAM (04.05.2011)
|
|
||
Examination has the oral form. The requirements correspond to the contents presented at the lectures. Last update: Hladík Milan, prof. Mgr., Ph.D. (07.10.2019)
|
|
||
Interval linear algebra:
(description, complexity, methods),
(Interval) nonlinear systems of equations.
Interval linear programming.
Global optimization using interval analysis. Last update: T_KAM (04.05.2011)
|