SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Multiobjective Optimisation - NOPT017
Title: Vícekriteriální optimalizace
Guaranteed by: Department of Applied Mathematics (32-KAM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Additional information: https://kam.mff.cuni.cz/~hladik/VP/
Guarantor: prof. Mgr. Milan Hladík, Ph.D.
Teacher(s): prof. Mgr. Milan Hladík, Ph.D.
Class: Informatika Mgr. - Diskrétní modely a algoritmy
Classification: Informatics > Optimalization
Annotation -
The lecture studies decision situations, when more critria are involved. We show how to handle such optimization problems. Remark: The course can be tought once in two years.
Last update: Hladík Milan, prof. Mgr., Ph.D. (07.04.2016)
Aim of the course -

Students will learn not only the classical results in multiobjective programming, but also the current trends. Absolvents should be able to apply their knowledge in practice and also do the reserach in this field.

Last update: Hladík Milan, prof. Mgr., Ph.D. (06.04.2016)
Literature -

[1] M. Ehrgott. Multicriteria Optimization. 2nd ed. Springer, Berlin, 2005.

[2] L. Grygarová. Základy vícekriteriálního programování. UK, Praha, 1996.

Last update: Hladík Milan, prof. Mgr., Ph.D. (06.04.2016)
Requirements to the exam - Czech

Zkouška je ústní a požadavky odpovídají sylabu předmětu v rozsahu, který byl presentován na přednášce.

Last update: Hladík Milan, prof. Mgr., Ph.D. (14.02.2018)
Syllabus -
  • Eficient (Pareto-optimal) solutions
  • Skalarization and relation to efficient solutions
  • Special sub-classes: multiobjective convex and linear programming
  • Various approaches to solve the problem
  • Combinatorial multiobjective optimization (shortest path, minimum spanning tree)
  • Multicriteria decision making (DEA, AHP)

It is assumed that the students have a basic knowledge of optimization, in particular linear programming.

Last update: Hladík Milan, prof. Mgr., Ph.D. (06.04.2016)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html