|
|
|
||
Various approaches to utility ( deterministic, stochastic, existece theorems
for utility functions, aggregation of preferences, Arrow's theorem);
consumer's behaviour (basic axioms,basic optimization problems, Slutski
equations , elasticities); theory of firm (production functions , basic
optimization problems, elasticities); dynamic supply-demand equilibrium
models (both discrete and continuous time, stability of euilibria);
ballance models (Leontjev , Linear programming, von Neuman); basic
information about price indices.
Last update: T_KAM (07.05.2001)
|
|
||
Ústní zkouška. Last update: Kynčl Jan, doc. Mgr., Ph.D. (31.05.2019)
|
|
||
Černý M. a kol.: Axiomatická teorie užitku, SPN-Praha 1975
Fishburn,P.: Utility Theory for Decision Making, John Wiley 1970, rus. překlad z r. 1978
Henderson,J.M., Quandt,R.E.: Microeconomic Theory. A Mathematical Approach,McGraw Hill 1971
Nikaido,H.: Convex Structures and Economic Theory, Academic Press, New York-London 1968, rus. překlad z r. 1972, vydalo nakl. \"Mir\",Moskva
Chiang,A.C.: Fundamental Methods of Mathematical Economics, Mc Graw Hill 1984 Last update: Zimmermann Karel, prof. RNDr., DrSc. (10.10.2017)
|
|
||
1 Axiomatic utility theory models.
2 Deterministic optimizatiom models using linear, convex and parametric programming, some approaches to non-convex optimization.
3 Multiple criteria optimization models, solutions of conflict situations.
4 Indeterministic optimization models (probabilistic, interval and fuzzy sets theory models).
5 Equilibrium models (supply-demand equilibrium, industrial branches equilibrium).
Basic theoretical knowledge of mathematical analysis and linear algebra is assumed. Last update: Kynčl Jan, doc. Mgr., Ph.D. (18.04.2018)
|