SubjectsSubjects(version: 953)
Course, academic year 2023/2024
   Login via CAS
Mechanics and Molecular Physics - NOFY021
Title: Mechanika a molekulová fyzika
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: winter
E-Credits: 8
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information:
Guarantor: doc. RNDr. Miroslav Kučera, CSc.
prof. Mgr. Jakub Čížek, Ph.D.
Classification: Physics > General Subjects
Is pre-requisite for: NFPL180
Annotation -
Kinematics and dynamics of mass points. Systems of mass points and rigid body mechanics. Oscillations and waves. Introduction to continuum mechanics. Introduction to thermodynamics. Molecular kinetic theory of bodies. The lecture is an introductory course for students of general physics.
Last update: G_F (21.05.2008)
Aim of the course -

Kinematics and dynamics of mass points. Oscillations and waves. System of mass points. Rigid body mechanics. Introduction to continuum mechanics. Molecular kinetic theory of bodies. Introduction to thermodynamics.

The lecture is an introductory course for students starting studies in physics.

Last update: T_KVOF (28.03.2008)
Course completion requirements -

Oral exam. Necessary condition for oral exam is obtaining of credit.

Credit will be given for successful passing of two control tests during semester.

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Literature - Czech

A.Havránek: Klasická mechanika I - II, skriptum, Karolinum, Praha 2002-3

J.Kvasnica a kol.: Mechanika, Academia, Praha 1988, 2004

D.Halliday, R.Resnick, J.Walker: Fyzika, Vutium, Brno 2000

P.Atkins, Paula: Fyzikální chemie, kap. 1-4, VŠChT, Praha 2013

Základní kurz fyziky pro distanční studium na MFF UK

R.P.Feynman, R.B.Leighton, M.Sands: Feynmanovy přednášky z fyziky I, II, Fragment, Praha 2000

Z.Horák, F.Krupka: Fyzika, SNTL, Praha 1976, 1981

R.Bakule, E.Svoboda : Molekulová fyzika, Academia, Praha 1992

J.Obdržálek, A. Vaněk: Termodynamika a molekulová fyzika, skriptum, PF Ústí n.L., 2000


J.Fähnrich, A.Havránek, D.Slavínská: Příklady z mechaniky, skriptum, Karolinum, Praha 2001

J. Brož, M. Rotter: Příklady z molekulové fyziky a termiky, skriptum SPN, Praha 1986


J.Kvasnica: Matematický aparát fyziky, 2. oprav. vyd., Academia 1997

K. Rektorys a kol.: Přehled užité matematiky, SNTL 1968, Prometheus 2009

P. Atkins, Čtyři zákony, které řídí vesmír, Academia 2012

I.G.Main: Kmity a vlny ve fyzice, Academia, Praha 1990

Last update: Kučera Miroslav, doc. RNDr., CSc. (29.09.2021)
Teaching methods - Czech

přednáška + cvičení

Last update: T_KVOF (28.03.2008)
Requirements to the exam -

Credit is necessary condition for exam.

Oral exam covers topics presented in lectures during semester.

Last update: Čížek Jakub, prof. Mgr., Ph.D. (10.06.2019)
Syllabus -

1. Kinematics.

Parametric description of motion, velocity, acceleration, decomposition of acceleration into tangential and normal component. Basic types of motion.

2. Dynamics of a point mass.

Newton's laws. Force acting at known types of motion. Equation of motion for a point mass, throws, harmonic motion. Inertial and non-inertial systems of coordinates, apparent forces, Coriolis' and centrifugal force.

3. Energy and motion in a force field.

Work, power, kinetic energy. Conservative force, central force, linear harmonic oscillator, potential energy. Non-conservative forces, friction. Gravitational law. Motion in a gravitational field, Kepler's laws.

4. Systems of point-masses and rigid body.

Description of point mass system, degrees of freedom. Rigid body kinematics. Momentum and angular momentum theorems - first and second impulse theorem. Momentum and angular momentum conservation theorems. Energy of a point-mass system, Koenig's theorem. Reduction of system of forces acting on a rigid body.

5. Rotation of rigid body.

Rotation about a fixed axis, equation of motion, moment of inertia. Heavy pulley, pendulum, rolling. Steiner's theorem. Kinetic energy of a rotating body. Moment of inertia tensor and rotation around a fixed point (outline).

6. Oscillations and waves.

Oscillations damped, forced, composition of vibrations, coupled oscillators, aperiodic damped motion, resonance. Concept of the wave, wave equation, plane wave. Energy and intensity of waves. Harmonic wave, its description, the wavelength - velocity - frequency relations. Phase velocity and group velocity. Types of waves, polarization. Superposition principle, interference of waves, standing waves. Huygens' principle, refraction, reflection, Doppler effect.

7. Continuum - general concepts.

Continuum kinematics. Stress tensor, strain tensor, strain rate tensor. Equation of equilibrium and equation of motion for continuum.

8. Elasticity.

Generalized Hook's law. Fundamental problem of elasticity theory. Extension, shear, torsion, bending.

9. Mechanics of fluids.

Liquid and gas. Equilibrium of fluids, hydrostatic pressure, Pascal's law, barometric formula. Archimedes' law. Continuity equation, ideal fluid flow, Bernoulli's equation. Newton's law of viscosity, viscous liquid flow, Poiseuille's equation. Laminar and turbulent flows.


1. Basics of thermodynamics.

Thermodynamic system and its equilibrium. Heat, temperature, heat capacity. The first law of thermodynamics, internal energy of an ideal gas. Equation of state of an ideal gas. Reversible and irreversible processes, Carnot cycle, thermodynamic temperature. The second law of thermodynamics, entropy. Third law of thermodynamics.

2. Molecular-kinetic theory of matter.

Basics of a statistical description. Pressure and temperature, Boltzmann's law and entropy. Maxwell-Boltzmann distribution. Mean free path, collision frequency, Brownian motion. Diffusion, thermal conductivity, internal friction.

3. Real gases and phase transitions.

Equation of state of real gases. Joule-Thomson effect. Equilibrium phase diagram of one-component systems, Gibbs' phase rule. Latent heats and temperatures of phase transitions.

4. Molecular phenomena in liquids.

Surface tension. Young-Laplace equation.

Last update: Šíma Vladimír, prof. RNDr., CSc. (01.10.2014)
Charles University | Information system of Charles University |